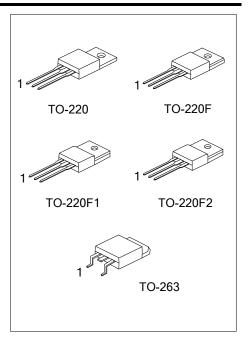
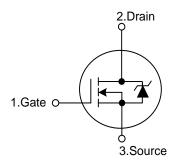
UNISONIC TECHNOLOGIES CO., LTD

UF740 Power MOSFET

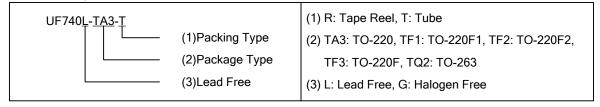

10A, 400V, 0.55Ω N-CHANNEL **POWER MOSFET**

DESCRIPTION


The N-Channel enhancement mode silicon gate power MOSFET is designed for high voltage, high speed power switching applications such as switching regulators, switching converters, solenoid, motor drivers, relay drivers.

FEATURES

- * 10A, 400V, $R_{DS(ON)}(0.55\Omega)$
- * Single Pulse Avalanche Energy Rated
- * Rugged SOA is Power Dissipation Limited
- * Fast Switching Speeds
- * Linear Transfer Characteristics
- * High Input Impedance


SYMBOL

ORDERING INFORMATION

Ordering Number		Doolsons	Pin Assignment			Da alsia a	
Lead Free	Halogen Free	Package	e 1 2		3	Packing	
UF740L-TA3-T	UF740G-TA3-T	TO-220	G	D	S	Tube	
UF740L-TF1-T	UF740G-TF1-T	TO-220F1	G	D	S	Tube	
UF740L-TF2-T	UF740G-TF2-T	TO-220F2	G	D	S	Tube	
UF740L-TF3-T	UF740G-TF3-T	TO-220F	G	D	S	Tube	
UF740L-TQ2-T	UF740G-TQ2-T	TO-263	G	D	S	Tube	
UF740L-TQ2-R	UF740G-TQ2-R	TO-263	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate S: Source D: Drain

UF740

■ **ABSOLUTE MAXIMUM RATINGS** (T_C = 25°C, Unless Otherwise Specified)

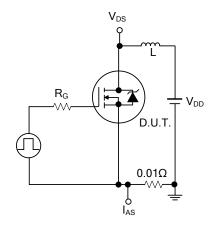
PARAMETER		SYMBOL	RATINGS	UNIT
Drain to Source Voltage (T _J =25°C~125°C)		V_{DS}	400	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (T _J =25°C~125°C)		V_{DGR}	400	V
Gate to Source Voltage		V_{GS}	±20	V
	Continuous	I_D	10	Α
Drain Current	$T_C = 100^{\circ}C$	I_D	6.3	Α
	Pulsed	I _{DM}	40	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	520	mJ
Power Dissipation	TO-220/TO-263		125	
	TO-220F/TO-220F1		44	W
	TO-220F2		46	
Derating above 25°C	TO-220/TO-263	P _D	1.0	
	TO-220F/TO-220F1		0.35	W/°C
	TO-220F2		0.37	
Junction Temperature		TJ	+150	°C
Operating Temperature		T _{OPR}	-55 ~ + 150	°C
Storage Temperature		T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

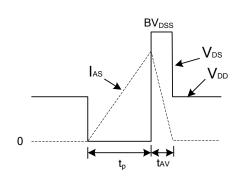
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
Junction to Case	TO-220/TO-263		1.0	
	TO-220F/TO-220F1	θ_{Jc}	2.86	°C/W
	TO-220F2		2.72	

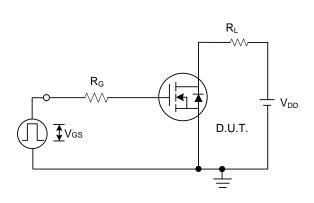
■ **ELECTRICAL CHARACTERISTICS** (T_C =25°C, Unless Otherwise Specified.)

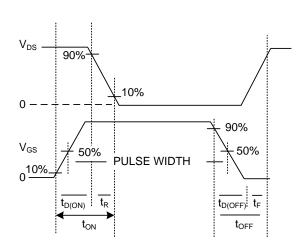

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Drain to Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$		400			V
Gate to Threshold Voltage	$V_{GS(THR)}$	$V_{GS} = V_{DS}, I_D = 250 \mu A$		2.0		4.0	V
On-State Drain Current (Note 1)	I _{D(ON)}	$V_{DS} > I_{D(ON)} \times R_{DS(ON)MAX}, V_{GS} = 10V$		10			Α
	B(OIT)	$V_{DS} = Rated BV_{DSS}, V_{GS} = 0V$				25	μA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =0.8 x Rated BV _{DSS} ,					
		V _{GS} =0V,T _J =125°C				250	μA
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V$				±500	nA
Drain to Source On Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 5.2A \text{ (Note 1)}$			0.38	0.55	Ω
Forward Transconductance	g _{FS}	$V_{DS} \ge 50V, I_D = 5.2A \text{ (Note 1)}$		5.8	8.9		S
Turn-On Delay Time	t _{DLY(ON)}	$V_{DD} = 200V, I_{D} \approx 10A,$			65	75	ns
Rise Time	t _R	$R_{GS} = 9.1\Omega, R_L = 20\Omega, V_{GS} = 10V$, [130	145	ns
Turn-Off Delay Time	t _{DLY(OFF)}	MOSFET Switching Times are Es			240	260	ns
Fall Time	t _F	Independent of Operating Tempe	· -		145	155	ns
Total Gate Charge		$V_{GS} = 10V, I_D = 10A, I_{G(REF)} = 1.5$	+				
(Gate to Source + Gate to Drain)	$Q_{G(TOT)}$	$V_{DS} = 0.8 \text{ x Rated BV}_{DSS}$,,,,,		138		nC
Gate to Source Charge	Q _{GS}	Gate Charge is Essentially Indepe	endent of		35		nC
Gate to Drain "Miller" Charge	Q _{GD}	Operating Temperature	oridorit or		35		nC
Input Capacitance	C _{ISS}	epotating remporators			1170		pF
Output Capacitance	Coss	$V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz$	-		160		рF
Reverse - Transfer Capacitance		$V_{GS} = UV, V_{DS} = 25V, I = 1.0WHZ$			26		рF
Reverse - Transfer Capacitance	C _{RSS}	Measured From Modified MOS	· C C T		20		рг
Internal Drain Inductance	L _D	the Contact Screw Symbol Show	Symbol Showing the Internal Devices		3.5		nН
		6mm (0.25in) From Package to Center of Die	D D		4.5		nH
Internal Source Inductance	Ls	From Header to Source Bonding Pad	L _s S		7.5		nH
SOURCE TO DRAIN DIODE SPECIF			-				
Source to Drain Diode Voltage	V_{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 10A$, $V_{GS} = 0V$ (I				2.0	V
Continuous Source to Drain Current	Is	Widdined Widdi LT) D			10	Α
Pulse Source to Drain Current (Note 2)	I _{SM}	Symbol Showing the Integral Reverse P-N Junction Diode				40	А
Reverse Recovery Time	trr	$T_J = 25^{\circ}\text{C}$, $I_{SD} = 10\text{A}$, $dI_{SD}/dt = 10^{\circ}$		170	390	790	ns
Reverse Recovery Charge	Q_{RR}	$T_J = 25^{\circ}C$, $I_{SD} = 10A$, $dI_{SD}/dt = 10$	J0A/μs	1.6	4.5	8.2	μC

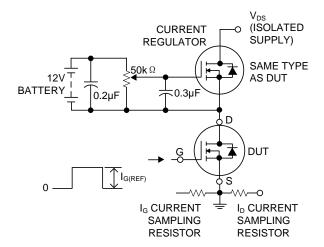
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty Cycle≤2%.

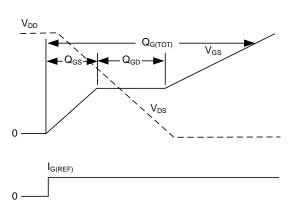

- 2. Repetitive rating: Pulse width limited by maximum junction temperature.
- 3. V_{DD} =50V, starting T_J =25°C, L=9.1mH, R_G =25 Ω , peak I_{AS} = 10A

UF740 Power MOSFET

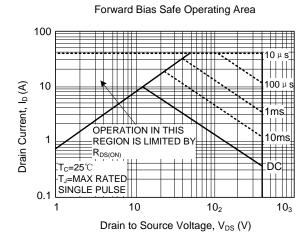

■ TEST CIRCUITS AND WAVEFORMS


Unclamped Energy Test Circuit

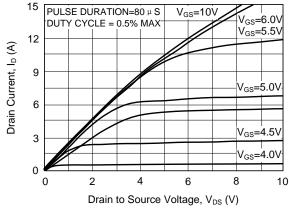

Unclamped Energy Waveforms


Switching Time Test Circuit

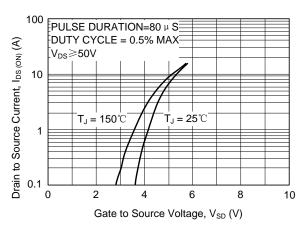
Resistive Switching Waveforms



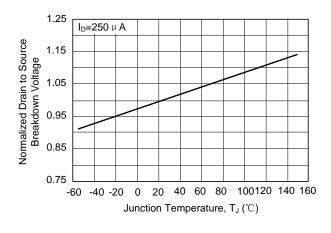
Gate Charge Test Circuit

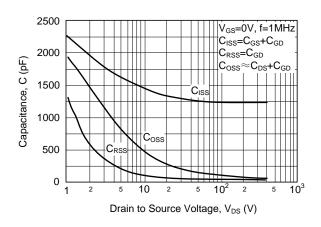

Gate Charge Waveforms

TYPICAL PERFORMANCE CUVES

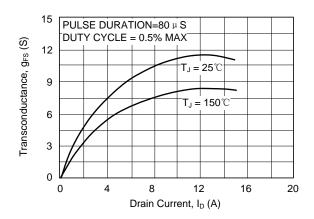


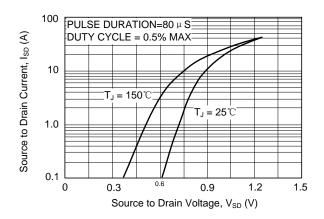
Output Characteristics 15 PULSE DURATION=80 µ S $V_{GS} = 10V$ DUTY CYCLE = 0.5% MAX $V_{GS} = 6.0V$ 12 $V_{GS} = 5.5V$ Drain Current, I_D (A) 9 $V_{GS} = 5.0 V$ 6 $V_{GS} = 4.5V$ 3 $V_{GS} = 4.0 V$ 0 0 40 80 120 160 200 Drain to Source Voltage, V_{DS} (V)


Saturation Characteristics

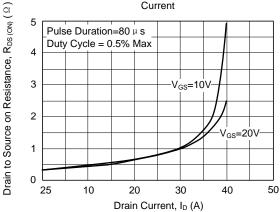

Transfer Characteristics

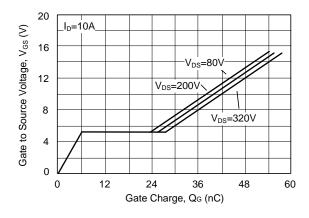
Normalized Drain to Source Breakdown Voltage vs. Junction Temperature


Capacitance vs. Drain to Source Voltage


UF740 Power MOSFET

■ TYPICAL PERFORMANCE CUVES (Cont.)


Transconduce vs. Drain Current


Source to Drain Diode Voltage

Drain to Source on Resistance vs. Voltage and Drain Current

Gate to Source Voltage vs. Gate Charge

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below:

614233C 648584F FDPF9N50NZ IRFD120 IRFF430 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2267(Q) 2SK2545(Q,T)

405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C PSMN4R2-30MLD

TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7

NTE2384 NTE2969 NTE6400A DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B

IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7

BSS340NWH6327XTSA1 MCM3400A-TP DMTH10H4M6SPS-13 IPS60R1K0PFD7SAKMA1 IPS60R360PFD7SAKMA1

IPS60R600PFD7SAKMA1 IPS60R210PFD7SAKMA1 DMN2990UFB-7B