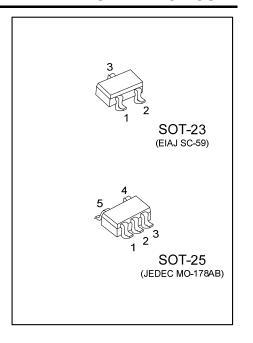
UNISONIC TECHNOLOGIES CO., LTD

UR132

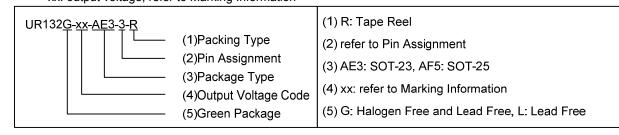
LINEAR INTEGRATED CIRCUIT


200mA LOW DROPOUT LINEAR **VOLTAGE REGULATOR**

DESCRIPTION

The UTC UR132 is a 200mA fixed output voltage low dropout linear regulator. Wide range of available output voltage fits most of applications. Built-in output current-limiting most thermal-limiting provide maximal protection against any fault conditions.

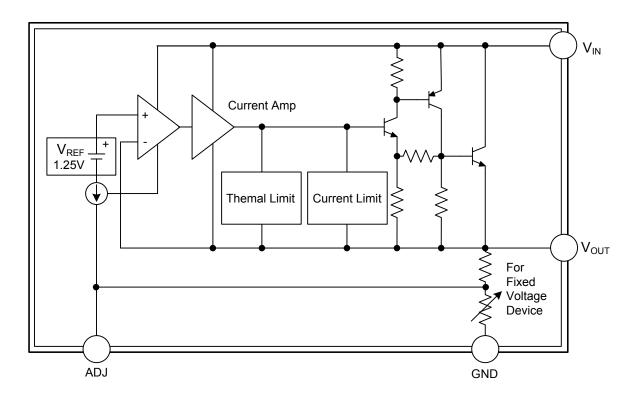
FEATURES


- * Guaranteed 200mA output current
- * Input voltage range up to 12V
- * Extremely tight load regulation
- * Fast transient response
- * Current-limiting and thermal-limiting
- * Three-terminal adjustable or fixed voltage.

ORDERING INFORMATION

	Order Number		Dookogo	Pin Assignment.					Dooking	
	Lead Free	Halogen Free	Package	1	2	3	4	5	Packing	
Γ	UR132L-xx-AE3-3-R	UR132G-xx-AE3-3-R	SOT-23	G	0	-	-	-	Tape Reel	
Γ	UR132L-xx-AE3-5-R	UR132G-xx-AE3-5-R	SOT-23	0	G	Ι	-	-	Tape Reel	
	UR132L-xx-AF5-C-R	UR132G-xx-AF5-C-R	SOT-25	ı	G	Ν	Ν	0	Tape Reel	

Note: Pin assignment: G:GND O:V_{OUT} I:V_{IN} N: No Connection xx: output voltage, refer to Marking Information



www.unisonic.com.tw 1 of 4

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	Pin Assignment	MARKING			
SOT-23	12: 1.2V 15 : 1.5V 18: 1.8V	GOI	Voltage Code ← RXX□ L: Lead Free G: Halogen Free			
	22: 2.2V 2E: 2.5V 26: 2.6V	OGI	Voltage Code RXX5 L: Lead Free G: Halogen Free			
SOT-25	27: 2.7V 28: 2.8V 30: 3.0V 33: 3.3V 50: 5.0V AD: ADJ	IGNNO	Voltage Code RXX L: Lead Free G: Halogen Free			

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

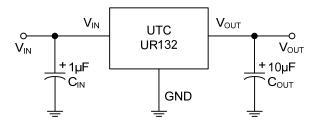
PARAMETER	SYMBOL	RATING	UNIT
Input Voltage	V_{IN}	-0.3 ~ 12	V
Power Dissipation	P _D	300	mW
Junction Temperature	TJ	+125	°C
Operation Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, C_{IN}=1μF, C_{OUT}=10μF, unless otherwise specified)

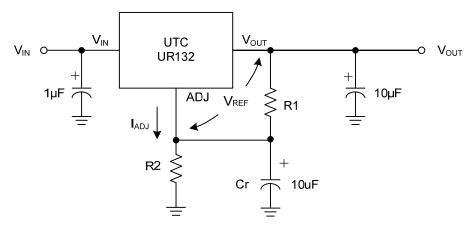
FOR $V_{OUT} < 3.3V (V_{OUT} \pm 2\%)$

1 OK 1001 (0.01 (1001 ± 270)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Output Voltage	V_{OUT}	I _L =2mA, V _{IN} -V _{OUT} =2V	V _{OUT} ×0.98	V_{OUT}	V _{OUT} ×1.02	V	
Output Voltage Temperature Coefficient	$T_{C}V_{O}$			50	150	ppm/°C	
Line Regulation	$\triangle V_{OUT}$	I_L =2mA, V_{IN} - V_{OUT} =2 V ~ V_{IN} =9 V			0.5	%V _{OUT}	
Load Regulation (Note 2)	$\triangle V_{OUT}$	I_L =2mA~200mA, V_{IN} - V_{OUT} =2 V		10	30	mV	
Current Limit (Note 3)	ΙL	V _{IN} -V _{OUT} =2V, V _{OUT} =0V	300			mA	
Dropout Voltage (Note 4,5)	V_D				1.5	V	
Standby current	I _{STN-BY}	I _L =0, V _{IN} =9V			3.0	mA	


FOR ADJ and V_{OUT}≥3.3V (V_{OUT}±2%)

FOR ADJ and Vout 23.3V (Vout 12%)									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
Output Voltage	V_{OUT}	I _L =2mA, V _{IN} -V _{OUT} =2V	V _{OUT} ×0.98	V_{OUT}	V _{OUT} ×1.02	V			
ADJUSTABLE (R1=120 Ω ,R2=200 Ω ,V _{OUT} =3.3V)									
Reference Voltage	V_{REF}	V_{IN} - V_{OUT} =2 V , I_L =2 mA	1.238	1.250	1.262	V			
Output Voltage Temperature Coefficient	$T_{C}V_{O}$			50	150	ppm/°C			
Line Regulation	∆Vоит	I_L =2mA, V_{IN} - V_{OUT} =2 V ~ V_{IN} =12 V			0.5	%V _{OUT}			
Load Regulation (Note 2)	△Vout	I_L =2mA~200mA, V_{IN} - V_{OUT} =2 V		10	30	mV			
Current Limit (Note 3)	ال	V _{IN} -V _{OUT} =2V, V _{OUT} =0V	300			mA			
Dropout Voltage (Note 4,5)	V_D				1.3	V			
Standby current	I _{STN-BY}	I _L =0, V _{IN} =12V			5.0	mA			

Note: 1. Guaranteed by design.


- 2. Regulation is measured at constant junction temperature, using pulsed on time.
- 3. Current limit is measured at constant junction temperature, using pulsed on time.
- 4. Dropout is measured at constant junction temperature, using pulsed on time, and the criterion is V_{OUT} inside target value±2%.
- 5. Dropout test is skipped at the condition of V_{IN} <3V.

■ TYPICAL APPLICATION CIRCUIT

The part may oscillate without the capacitor, a $10\mu F$ (or larger) capacitor is recommended between V_{OUT} and GND for stability. Any type of capacitor can be used, but not Aluminum electrolytic when operating below -20°C. The capacitance may be increased without limit. Besides, another $1\mu F$ capacitor (or larger) should be placed between V_{IN} to GND.

■ UR132 ADJUSTABLE

Cr:10 μ F to improve ripple rejection $V_{OUT}=V_{REF}(1+R2/R1)+I_{ADJ}xR2$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG NCV78M08BDTRKG NCV78M08BDTRKG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G MC78M12CDTT5G L9468N LT1054IS8#TRPBF