

UTC UNISONIC TECHNOLOGIES CO., LTD

UT213

+5.0V POWER SUPPLY, 120KBPS, **MULTICHANNAEL RS-232 LINE** DRIVERS/RECEIVERS

DESCRIPTION

The UTC UT213 consists of 4 drivers and 5 receivers. It meets EIA/TIA-232 and V.28/V.24 specifications, it intended for notebook computer applications. A high-efficiency, dual charge-pumps power supply and a low-dropout transmitter combine to deliver true RS-232 performance from a single +4.5V~+5.5V power supply. A guaranteed data rate of 120kbps provides compatibility with popular software for communicating with PCs.

The UTC UT213 has an active-low shutdown and an active-high receiver enable control.

FEATURES

- * Operates With 4.5V~5.5V Power Supply
- * Four Drivers and Five Receivers
- * Designed to Transmit at a Data Rate of 120 kbps
- * Low Standby Current (15µA Typical)
- * Serial-Mouse Drivability
- * Exceeds ±8KV ESD Protection(HBM) for RS-232 I/O Pins

ORDERING INFORMATION

Ordering Number		Daakaga	Packing	
Lead Free	Halogen Free	Раскаде	Packing	
UT213L-S28-R	UT213G-S28-R	SOP-28	Tape Reel	
UT213L-R28-R	UT213G-R28-R	SSOP-28	Tape Reel	

UT213G- <u>S28</u> -R	(1)Packing Type	(1) R: Tape Reel
	(2)Package Type (3)Green Package	(2) S28: SOP-28, R28: SSOP-28 (3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

UT213

PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1, 2, 3, 28	T _{XOUT}	RS-232 Transmitter Outputs
4, 9, 27	$R_{1IN} \sim R_{3IN}$	RS-232 Receiver Inputs
5, 8, 26	R _{10UT} ~ R _{30UT}	TTL/CMOS Receiver Outputs
6, 7, 20, 21	T _{XIN}	TTL/CMOS Transmitter Inputs
10	GND	Ground
11	V _{CC}	+4.5V ~ +5.5V Supply Voltage
12	C1+	Positive terminal of the voltage doubler charge-pump capacitor
13	V+	+5.5V generated by the charge pump
14	C1-	Negative terminal of the voltage doubler charge-pump capacitor
15	C2+	Positive terminal of inverting charge-pump capacitor
16	C2-	Negative terminal of inverting charge-pump capacitor
17	V-	-5.5V generated by the charge pump
18, 23	$R_{4IN} \sim R_{5IN}$	RS-232 Receiver Inputs (Active in shutdown)
19, 22	R _{40UT} ~ R _{50UT}	TTL/CMOS Receiver Outputs (Active in shutdown)
24	EN	Active high enable control
25	SHDN	Active low shutdown control

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
V _{cc}		V _{cc}	+6.0	V
V+ (Note 2)		V+	+7.0	V
V- (Note 2)		V-	-7.0	V
V+ + V- (Note 2)		V _{PUMP}	+13	V
Input Voltagos	T_IN, SHDN, EN	Mar	-0.3 ~ +6.0	V
input voltages	R_IN	VIN	±30	V
Output \ (alta raa	T_OUT	N	±13.2	V
Oulput vollages	R_OUT	VOUT	-0.3 ~ (V _{CC} +0.3)	V
Short-Circuit Duration	Short-Circuit Duration T_OUT		Continuous	
Power Dissipation(T _A =25°C)		PD	870	mW
Operating Temperature		T _{OPR}	-40 ~ +85	°C
Storage Temperature		T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. V+ and V- can have maximum magnitudes of 7.0V, but their absolute difference cannot exceed 13V.

ELECTRICAL CHARACTERISTICS

(V_{CC}=+5V, C1~C4=0.1 μ F, T_A = T_{MIN} to T_{MAX}, unless otherwise specified)

					/				
PARAMETE	२	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
DC CHARACTERISTI	CS		÷						
Supply Current, Shutdown		I _{SHDN}	T 05%0	$\overline{\text{SHDN}}$ =0V, EN=0V or V _{CC}			15	50	μA
V _{CC} Supply Current		Icc	T _A = 25 C	SHDN =	V_{CC} , EN=0V or V_{CC}		11	20	mA
LOGIC INPUTS									
lument la sia Thus shald	Low	V _{LGL}	T_IN, SHI	DN , EN				0.8	V
Input Logic Threshold	High	V_{LGH}	T_IN, SHI	DN , EN, \	/ _{cc} =5V	2.4			V
Logic Pullup Current		I Pullup	T_IN=0V				15	200	μA
RECEIVER OUTPUTS	5								
Output Leakage Curre	nt	IROUT(LK)	EN=0V,0V	≤ROUT≤\	/cc		0.05	±10	μA
	Low	V _{ROUTL}	I _{OUT} = 1.6n	nA				0.4	V
Output Voltage	High	VROUTH	I _{OUT} = -1.0	mA		3.5			V
RECEIVER INPUTS									
Input Voltage Range		V _{RR}			-30		30	V	
Input Threshold Low		V _{RINL} T _A =2			Active mode	0.8	1.2		
			T _A =25°C	Γ _A =25°C	Shutdown mode R4, R5	0.6	1.5		V
					Active mode		1.7	2.4	
Input Threshold High		V_{RINH}	T _A =25°C		Shutdown mode R4, R5		1.5 2.4	V	
Input Hysteresis		V _{RINHYS}	no Hystere	sis in shu	tdown	0.2	0.5	1.0	V
Input Resistance		V _{RINRES}	T _A =25°C			3	5	7	kΩ
TRANSMITTER OUT	PUTS								
Output Voltage Swing		V _{TOUTSW}	All transmitter outputs loaded with $3k\Omega$ to ground		±5.0	±5.4		V	
Output Resistance		V _{TOUTRES}	$V_{CC} = V + = V - = 0V$, Transmitter output=±2V		300	10M		Ω	
Output Short-Circuit C	urrent	I _{TSC}					±10	±60	mA
Output Leakage Curre	nt	I _{TOUT(L)}	V _{CC} =5.0V, V _{OUT} =±12V, Transmitters disabled				±25	μA	

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER		SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
TIMING CHARACTER	ISTICS							
Maximum Data Rate		DR	$R_L=3k\Omega$ to $7k\Omega$ $C_L=50pf$ to 1000pF one transmitter switchin	g	120			kbps
Receiver Propagation Delay		T _{DR1}	SHDN =0V, R4,R5			4	40	μs
		T _{DR2}	SHDN =V _{CC}			0.5	10	μs
	Enable	t _{R(EN)}	Normal operation			600		ns
Receiver Output Time	Disable	t _{R(DIS)}				200		ns
Transmitter Skew		t _{TS}	t _{PHL} — t _{PLH}			300		ns
Transition-Region Slew Rate		SR	$T_A=25^{\circ}C$, $R_L=3k\Omega\sim7k\Omega$, measured from +3V ~ -3V or -3V ~ +3V	C _L =50pF~2500pF		15		V/µs

Note: Typical values are at T_A=25°C.

DETAILED DESCRIPTION

Charge-Pump Voltage Converter

The UTC **UT213** consists of a regulated dual charge pumps that provide output voltages of +5.5V and -5.5V, regardless of the input voltage (V_{CC}) changing from +4.5V to +5.5V.

The charge pumps operate in a discontinuous mode: if the output voltages are less than 5.5V, the charge pumps are enabled; if the output voltages exceed 5.5V, the charge pumps are disabled.

Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C4) to generate the V+ and V- supplies, refer to application circuit.

RS-232 Transmitters

UTC **UT213**'s transmitters are inverting level translators that convert CMOS-logic levels to 5.0V EIA/TIA-232 levels. They guarantee a 120kbps data rate when V_{CC} =5V with worst-case loads of 3k Ω in parallel with 1000pF, providing compatibility with PC-to-PC communication software.

Input thresholds are both CMOS and TTL compatible. The inputs of unused drivers can be left unconnected since $400k\Omega$ pullup resistors to V_{CC} are included on-chip. Since all drivers invert, the pullup resistors force the outputs of unused drivers low. The input pullup resistors typically source 15μ A; therefore, the driver inputs should be driven high or open circuited to minimize power-supply current in shutdown mode.

RS-232 Receivers

The UTC **UT213**'s receivers convert RS-232 signals to CMOS logic output levels. Receiver outputs are inverting, maintaining compatibility with driver outputs. The guaranteed receiver input thresholds of +0.8V and +2.4V are significantly tighter than the Q3.0V threshold required by the EIA/TIA-232E specification. This allows receiver inputs to respond to TTL/CMOS logic levels and improves noise margin for RS-232 levels.

Receiver inputs have approximately +0.5V hysteresis. This provides clean output transitions, even with slow rise and fall time input signals with moderate amounts of noise and ringing. In shutdown, the UTC **UT213**'s receivers R4 and R5 have no hysteresis.

During normal operation, the UTC **UT213**'s receiver propagation delay is typically 1us. When entering shutdown with receivers active, R4 and R5 are not valid until 80Fs after SHDN is driven low. In shutdown mode, propagation delays increase to 4us for a high-to-low or a low-to-high transition.

Shutdown Function

In shutdown mode, the UTC **UT213**'s charge pumps are turned off, V+ is pulled down to V_{CC} , V- is pulled to ground, and the transmitter outputs are disabled. This reduces supply current typically to 15µA. The time required to exit shutdown is 1ms, All receivers except R4 and R5 on the UTC **UT213** are put into a high-impedance state in shutdown mode. The UTC **UT213**'s R4 and R5 receivers still function in shutdown mode. These two receivers are useful for monitoring external activity while maintaining minimal power consumption.

The enable control is used to put the receiver outputs into a high-impedance state, so that the receivers can be connected directly to a three-state bus. It has no effect on the RS-232 drivers or on the charge pumps.

SHDN	EN	OPERATION STATUS	TRANSMITTERS T1-T4	R1, R2, R3	R4, R5
0	0	Shutdown	High-Z	High-Z	High-Z
0	1	Shutdown	High-Z	High-Z	Active*
1	0	Normal operation	Active	High-Z	High-Z
1	1	Normal operation	Active	Active	Active

Table 1.	Shutdown	Logic	Control	Truth	Table
----------	----------	-------	---------	-------	-------

* Active with reduced performance.

TYPICAL APPLICATION CIRCUIT

Table 2. Required Capacitor Value

V _{CC} (V)	C1, C2, C3, C4 (µF)	C _{BYPASS} (µF)
4.5~5.5	0.1	0.047

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RS-232 Interface IC category:

Click to view products by Unisonic manufacturer:

Other Similar products are found below :

062191EB SP508ECF-L XR32330EBERTR-F CH438L HIN202CB HIN202CBN HIN202EIB HIN206CB HIN206EIA HIN207EIAZ HIN207EIBZ HIN208ECB HIN213EIB HIN232ACB HIN232ACBN HIN232ACP HIN232CB HIN232ECP HIN232IB HIN232IP HIN238CB HIN239CB HIN241CA ICL232CBE ICL232IBE ICL3207ECA ICL3217ECB ICL3221CV ICL3221ECA ICL3221ECV ICL3221IA ICL3223CA ICL3223ECA ICL3223IA ICL3225ECA ICL3232CA ICL3232CP ICL3232CV ICL3232ECB ICL3232IBN ICL3232IV ICL3237CA ICL3237ECA ICL3238ECA ICL3241ECA ICL3243CA ICL3243CB ICL3243ECA ICL3243ECB ICL3243ECB ICL3243ECV