1200V-53m Ω SiC FET

Rev. A, April 2022

DATASHEET

UF4C120053K3S

Description

The UF4C120053K3S is a $1200 \mathrm{~V}, 53 \mathrm{~m} \Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-3L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance $\mathrm{R}_{\mathrm{DS}(o n)}$: $53 \mathrm{~m} \Omega$ (typ)
- Operating temperature: $175^{\circ} \mathrm{C}$ (max)
- Excellent reverse recovery: $\mathrm{Q}_{\mathrm{rr}}=117 \mathrm{nC}$
- Low body diode $\mathrm{V}_{\text {FSD }}$: 1.28 V
- Low gate charge: $\mathrm{Q}_{\mathrm{G}}=37.8 \mathrm{nC}$
- Threshold voltage $\mathrm{V}_{\mathrm{G}(\mathrm{th}):}$: 4.8 V (typ) allowing 0 to 15 V drive
- Low intrinsic capacitance
- ESD protected: HBM class 2 and CDM class C3

Part Number	Package	Marking
UF4C120053K3S	TO-247-3L	UF4C120053K3S Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	$\mathrm{V}_{\text {DS }}$		1200	V
Gate-source voltage	$V_{G S}$	DC	-20 to +20	V
		AC ($\mathrm{f}>1 \mathrm{~Hz}$)	-25 to +25	V
Continuous drain current ${ }^{1}$	$I_{\text {D }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	34	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	25	A
Pulsed drain current ${ }^{2}$	I_{DM}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	100	A
Single pulsed avalanche energy ${ }^{3}$	$\mathrm{E}_{\text {AS }}$	$\mathrm{L}=15 \mathrm{mH}, \mathrm{I}_{\text {AS }}=2.7 \mathrm{~A}$	54.6	mJ
SiC FET dv/dt ruggedness	dv/dt	$\mathrm{V}_{\mathrm{DS}} \leq 800 \mathrm{~V}$	150	V/ns
Power dissipation	$\mathrm{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	263	W
Maximum junction temperature	$\mathrm{T}_{\mathrm{J} \text { max }}$		175	${ }^{\circ} \mathrm{C}$
Operating and storage temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$		-55 to 175	${ }^{\circ} \mathrm{C}$
Max. lead temperature for soldering, $1 / 8$ " from case for 5 seconds	T_{L}		250	${ }^{\circ} \mathrm{C}$

1. Limited by $T_{J, \text { max }}$
2. Pulse width t_{p} limited by $\mathrm{T}_{\mathrm{J}, \text { max }}$
3. Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
			Min	Typ	Max	
Thermal resistance, junction-to-case	$\mathrm{R}_{\text {өJC }}$			0.44	0.57	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics ($T_{j}=+25^{\circ} \mathrm{C}$ unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions	Value			Units
			Min	Typ	Max	
Drain-source breakdown voltage	$B V_{\text {DS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	1200			V
Total drain leakage current	$\mathrm{I}_{\text {DSS }}$	$\begin{gathered} V_{D S}=1200 \mathrm{~V}, \\ V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{gathered}$		0.2	50	$\mu \mathrm{A}$
		$\begin{gathered} V_{D S}=1200 \mathrm{~V} \\ V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$		15		
Total gate leakage current	$\mathrm{I}_{\text {GSS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{GS}}=-20 \mathrm{~V} /+20 \mathrm{~V} \end{aligned}$		6	20	$\mu \mathrm{A}$
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \\ \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{gathered}$		53	67	$\mathrm{m} \Omega$
		$\begin{gathered} \mathrm{V}_{G S}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \\ \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{gathered}$		112		
		$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \\ \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$		159		
Gate threshold voltage	$\mathrm{V}_{\mathrm{G}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	4	4.8	6	V
Gate resistance	R_{G}	$\mathrm{f}=1 \mathrm{MHz}$, open drain		4.5		Ω

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions	Value			Units
			Min	Typ	Max	
Diode continuous forward current ${ }^{1}$	I_{5}	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			34	A
Diode pulse current ${ }^{2}$	$I_{\text {S,pulse }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			100	A
		$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{OV}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \\ \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{gathered}$		1.28	1.65	
		$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \\ \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{gathered}$		1.96		
Reverse recovery charge	Q_{rr}	$\begin{gathered} \mathrm{V}_{\mathrm{R}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=25 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=20 \Omega \end{gathered}$		117		nC
Reverse recovery time	t_{rr}	$\begin{gathered} \mathrm{di} / \mathrm{dt}=1300 \mathrm{~A} / \mu \mathrm{s}, \\ \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{gathered}$		27		ns
Reverse recovery charge	$\mathrm{Q}_{\text {rr }}$	$\begin{gathered} \mathrm{V}_{\mathrm{R}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=25 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=20 \Omega \end{gathered}$		155		nC
Reverse recovery time	t_{rr}	$\begin{gathered} \mathrm{di} / \mathrm{dt}=1300 \mathrm{~A} / \mu \mathrm{s}, \\ \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{gathered}$		29		ns

Onlin

Typical Performance - Dynamic

Parameter	Symbol	Test Conditions	Value			Units
			Min	Typ	Max	
Input capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} V_{D S}=800 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{f}=100 \mathrm{kHz} \end{gathered}$		1370		pF
Output capacitance	$\mathrm{C}_{\text {oss }}$			43.5		
Reverse transfer capacitance	$\mathrm{C}_{\text {rss }}$			2.2		
Effective output capacitance, energy related	$\mathrm{C}_{\text {oss(er) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \text { to } 800 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{gathered}$		54		pF
Effective output capacitance, time related	$\mathrm{C}_{\text {oss(tr) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V} \text { to } 800 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{gathered}$		100		pF
Coss stored energy	$\mathrm{E}_{\text {oss }}$	$\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		17.3		$\mu \mathrm{J}$
Total gate charge	Q_{G}	$\begin{aligned} & V_{\mathrm{DS}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 15 \mathrm{~V} \end{aligned}$		37.8		nC
Gate-drain charge	$\mathrm{Q}_{\text {GD }}$			9.5		
Gate-source charge	Q ${ }_{\text {gs }}$			10		
Turn-on delay time	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	Note 4, $\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$, Gate Driver $=0 \mathrm{~V}$ to +15 V , $\mathrm{R}_{\mathrm{G}_{-} \mathrm{O}}=1 \Omega, \mathrm{R}_{\mathrm{G}_{-} \mathrm{OFF}}=20 \Omega$ Inductive Load, FWD: same device with $\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=20 \Omega, \\ \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{gathered}$		36		ns
Rise time	t_{r}			12		
Turn-off delay time	$\mathrm{t}_{\text {d(off) }}$			80		
Fall time	t_{f}			17		
Turn-on energy	$\mathrm{E}_{\text {ON }}$			580		$\mu \mathrm{J}$
Turn-off energy	$\mathrm{E}_{\text {OfF }}$			175		
Total switching energy	$\mathrm{E}_{\text {TOTAL }}$			755		
Turn-on delay time	$\mathrm{t}_{\text {d(on) }}$	Note 4, $\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$, Gate Driver $=0 \mathrm{~V}$ to +15 V , $\mathrm{R}_{\mathrm{G}_{-} \mathrm{O}}=1 \Omega, \mathrm{R}_{\mathrm{G}_{-} \mathrm{OFF}}=20 \Omega$ Inductive Load, FWD: same device with $\begin{gathered} V_{G S}=0 V, R_{G}=20 \Omega, \\ T_{J}=150^{\circ} \mathrm{C} \end{gathered}$		37		ns
Rise time	t_{r}			13		
Turn-off delay time	$\mathrm{t}_{\text {d(off) }}$			85		
Fall time	t_{f}			18		
Turn-on energy	$\mathrm{E}_{\text {ON }}$			631		$\mu \mathrm{J}$
Turn-off energy	$\mathrm{E}_{\text {OfF }}$			205		
Total switching energy	$\mathrm{E}_{\text {TOTAL }}$			836		

4. Measured with the switching test circuit in Figure 23. Calculator Online

Typical Performance - Dynamic (continued)

Parameter	Symbol	Test Conditions	Value			Units
			Min	Typ	Max	
Turn-on delay time	$\mathrm{t}_{\text {d(on) }}$	Note 5 and 6, $\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$, Gate Driver $=0 \mathrm{~V}$ to +15 V , $\mathrm{R}_{\mathrm{G}}=1 \Omega$, inductive Load, FWD: same device with $\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { and } \mathrm{R}_{\mathrm{G}}=1 \Omega, \mathrm{RC} \\ \text { snubber: } \mathrm{R}_{\mathrm{S} 1}=5 \Omega \text { and } \\ \mathrm{C}_{\mathrm{S} 1}=95 \mathrm{pF}, \\ \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{gathered}$		39		ns
Rise time	t_{r}			14		
Turn-off delay time	$\mathrm{t}_{\text {d(off) }}$			35		
Fall time	t_{f}			14		
Turn-on energy including R_{s} energy	$\mathrm{E}_{\text {ON }}$			644		$\mu \mathrm{J}$
Turn-off energy including R_{s} energy	E ${ }_{\text {OFF }}$			84		
Total switching energy	$\mathrm{E}_{\text {Total }}$			728		
Snubber R_{S} energy during turn-on	$E_{\text {RS_on }}$			1.2		
Snubber $\mathrm{R}_{\text {S }}$ energy during turn-off	$\mathrm{E}_{\text {RS_OFF }}$			2.1		
Turn-on delay time	$\mathrm{t}_{\text {don) }}$	Note 5 and 6, $V_{D S}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$, Gate Driver $=0 \mathrm{~V}$ to +15 V , $\mathrm{R}_{\mathrm{G}}=1 \Omega$, inductive Load, FWD: same device with $\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { and } \mathrm{R}_{\mathrm{G}}=1 \Omega, \mathrm{RC} \\ \text { snubber: } \mathrm{R}_{\mathrm{S} 1}=5 \Omega \text { and } \\ \mathrm{C}_{\mathrm{S} 1}=95 \mathrm{pF}, \\ \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{gathered}$		40		ns
Rise time	t_{r}			16		
Turn-off delay time	$\mathrm{t}_{\text {d(off) }}$			38		
Fall time	t_{f}			15		
Turn-on energy including R_{s} energy	$\mathrm{E}_{\text {ON }}$			695		$\mu \mathrm{J}$
Turn-off energy including R_{s} energy	$\mathrm{E}_{\text {OFF }}$			99		
Total switching energy	$\mathrm{E}_{\text {Total }}$			794		
Snubber $\mathrm{R}_{\text {S }}$ energy during turn-on	$E_{\text {RS_ON }}$			1.1		
Snubber RS energy during turn-off	$\mathrm{E}_{\text {RS_OFF }}$			2		

5. Measured with the switching test circuit in Figure 24.
6. In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.

Typical Performance Diagrams

Figure 1. Typical output characteristics at $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$, tp < 250μ s

Figure 3. Typical output characteristics at $\mathrm{T}_{J}=175^{\circ} \mathrm{C}$, tp $<250 \mu \mathrm{~s}$

Figure 2. Typical output characteristics at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, tp < 250 s

Figure 4. Normalized on-resistance vs. temperature at $\mathrm{V}_{\mathrm{GS}}=12 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$

Figure 5. Typical drain-source on-resistances at $\mathrm{V}_{\mathrm{GS}}=$ 12V

Figure 7. Threshold voltage vs. junction temperature at $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$

Figure 6. Typical transfer characteristics at $\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}$

Figure 8. Typical gate charge at $\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{D}}=$ 25A

Figure 9. 3rd quadrant characteristics at $\mathrm{T}_{J}=-55^{\circ} \mathrm{C}$

Figure 11. 3rd quadrant characteristics at $\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$

Figure 10. 3rd quadrant characteristics at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Figure 12. Typical stored energy in $\mathrm{C}_{\mathrm{OSS}}$ at $\mathrm{V}_{\mathrm{GS}}=\mathrm{OV}$

Figure 13. Typical capacitances at $\mathrm{f}=100 \mathrm{kHz}$ and V_{GS} = OV

Figure 15. Total power dissipation

Figure 14. DC drain current derating

Figure 16. Maximum transient thermal impedance

Figure 17. Safe operation area at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{D}=0$, Parameter t_{p}

Figure 19. Clamped inductive switching energy vs. junction temperature at $\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{D}}=25 \mathrm{~A}$

Figure 18. Reverse recovery charge Qrr vs. junction temperature

Figure 20. Clamped inductive switching energy vs. drain current at $\mathrm{V}_{\mathrm{DS}}=800 \mathrm{~V}$ and $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$

Figure 21. Clamped inductive switching turn-on energy vs. $\mathrm{R}_{\mathrm{G}, \mathrm{EXT} \text { _ON }}$

Figure 23. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber ($\mathrm{R}_{\mathrm{S}}=$ $2.5 \Omega, \mathrm{C}_{\mathrm{s}}=100 \mathrm{nF}$) is used to reduce the power loop high frequency oscillations.

Figure 22. Clamped inductive switching turn-off energy vs. $\mathrm{R}_{\mathrm{G}, \mathrm{EXT} \text { _OfF }}$

Figure 24. Schematic of the half-bridge mode switching test circuit with device $R C$ snubbers ($R_{s 1}$ $=5 \Omega, C_{s 1}=95 \mathrm{pF}$) and a bus RC snubber ($\mathrm{R}_{\mathrm{S}}=2.5 \Omega$, $\mathrm{C}_{\mathrm{s}}=100 \mathrm{nF}$).

Contact
Sales
Learn More

Applications Information

SiC FETs are enhancement-mode power switches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{D S(o n)}$), output capacitance ($C_{\text {oss }}$), gate charge $\left(Q_{G}\right)$, and reverse recovery charge (Qrr) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode. Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high $\mathrm{dv} / \mathrm{dt}$ and di/dt rates. An external gate resistor is recommended when the FET is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on SiC FET operation, see www.unitedsic.com.
A snubber circuit with a small $R_{(G)}$, or gate resistor, provides better EMI suppression with higher efficiency compared to using a high $R_{(G)}$ value. There is no extra gate delay time when using the snubber circuitry, and a small $\mathrm{R}_{(\mathrm{G})}$ will better control both the turn-off $\mathrm{V}_{(\mathrm{DS})}$ peak spike and ringing duration, while a high $R_{(G)}$ will damp the peak spike but result in a longer delay time. In addition, the total switching loss when using a snubber circuit is less than using high $\mathrm{R}_{(\mathrm{G})}$, while greatly reducing $\mathrm{E}_{(\mathrm{OFF})}$ from mid-to-full load range with only a small increase in $\mathrm{E}_{(\mathrm{ON})}$. Efficiency will therefore improve with higher load current. For more information on how a snubber circuit will improve overall system performance, visit the UnitedSiC website at www.unitedsic.com

Important notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by UnitedSiC manufacturer:
Other Similar products are found below :
MCH3443-TL-E MCH6422-TL-E NTNS3A92PZT5G IRFD120 JANTX2N5237 2N7000 2SK2464-TL-E 2SJ277-DL-E 2SK2267(Q)
2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IRS2092STRPBF-EL
IPS70R2K0CEAKMA1 BSF024N03LT3 G PSMN4R2-30MLD TK31J60W5,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7
EFC2J004NUZTDG P85W28HP2F-7071 DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 NTE6400A DMC2700UDMQ-7
DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 SSM6P54TU,LF DMP22D4UFO-7B IPS60R3K4CEAKMA1
DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 IRF40H233XTMA1 IPSA70R950CEAKMA1 IPSA70R2K0CEAKMA1 STU5N65M6
C3M0021120D DMN6022SSD-13 DMN13M9UCA6-7 MCQ4828A-TP

