
Datasheet

Description

United Silicon Carbide's cascode products co-package its xJ series highperformance SiC JFETs with a cascode optimized MOSFET to produce the only standard gate drive SiC device in the market today. This series exhibits ultra-low gate charge, but also the best reverse recovery characteristics of any device of similar ratings. These devices are excellent for switching inductive loads, and any application requiring standard gate drive.

Part Number	Package	Marking
UJC1210K	TO-247-3L	UJC1210K

Typical Applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Features

- Max. on-resistance $R_{DS(on)max}$ of $100m\Omega$
- Standard 12V gate drive
- Maximum operating temperature of 150°C
- Excellent reverse recovery
- Low gate charge
- Low intrinsic capacitance
- RoHS compliant

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		1200	V
Gate-source voltage	V _{GS}	DC	-25 to +25	V
Continuous drain current ¹	1	T _C = 25°C	21.5	А
Continuous drain current	I _D	T _C = 100°C	14	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	66.5	А
Short-circuit withstand time ³	t _{sc}	V _{GS} =15V, V _{CC} <600V	4	μs
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =2.8A	64	mJ
Power dissipation	P _{tot}	T _C = 25°C	113.6	w
Maximum junction temperature	T _{J,max}		150	°C
Operating and storage temperature	T _J , T _{STG}		-55 to 150	°C
Max. lead temperature for soldering, 1/8" from case for 5 Seconds	TL		250	°C

- 1 Limited by T_{J,max}
- 2 Pulse width t_p limited by T_{J,max}
- 3 Starting $T_J = 25^{\circ}C$

Datasheet

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

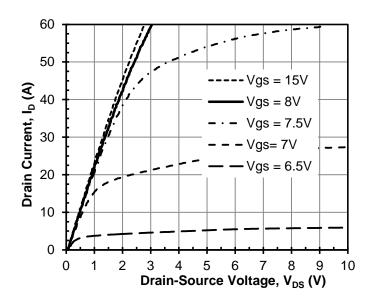
Parameter	Symbol	Test Conditions	Value			Units
Farameter			Min	Тур	Max	Units
Drain-source breakdown voltage	BV _{DS}	V _{GS} =0V, I _D =1mA	1200			V
Total drain leakage current	I _{DSS}	V _{DS} = 1200V, V _{GS} = 0V, T _J = 25°C		70	500	
		V _{DS} = 1200V, V _{GS} = 0V, T _J = 150°C		150		μΑ
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _j =25°C, V _{GS} = -20V / +20V		5	100	nA
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =10A, T _J = 25°C		70	100	- mΩ
		V _{GS} =12V, I _D =10A, T _J = 150°C		161		
Gate threshold voltage	V _{G(th)}	V _{DS} = 5V, I _D = 10mA	4.5	5	5.5	V
Gate resistance	R _G	f = 1MHz, open drain		1.1		Ω

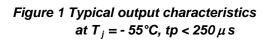
Typical Performance - Reverse Diode

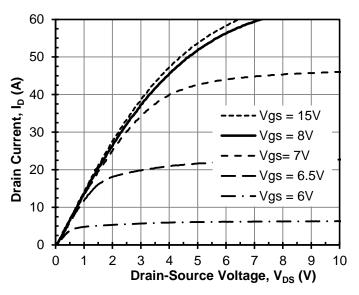
Parameter	Symbol	Test Conditions	Value			L lusites
			Min	Тур	Max	Units
Diode continuous forward current ¹	۱ _s	T _C = 25°C			21.5	А
Diode pulse current ²	I _{S,pulse}	T _C = 25°C			66.5	А
Forward voltage	V _{FSD}	V _{GS} = 0V, I _F =10A, T _J = 25°C		1.4	2	- V
		V _{GS} = 0V, I _F = 10A, T _J =150°C		2		
Reverse recovery charge	Q _{rr}	V_{R} =800V, I _F =14A, V_{GS} =0V, $R_{G_{EXT}}$ = 22 Ω		112		nC
Reverse recovery time	t _{rr}	di/dt=1550A/µs, T」 = 25°C		34		ns
Reverse recovery charge	Q _{rr}	V_{R} =800V, I _F =14A, V_{GS} =0V,R _{G_EXT} = 22 Ω		127		nC
Reverse recovery time	t _{rr}	di/dt=1550A/µs, Tյ = 150°C		36		ns

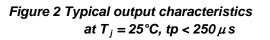
Datasheet

Typical Performance - Dynamic

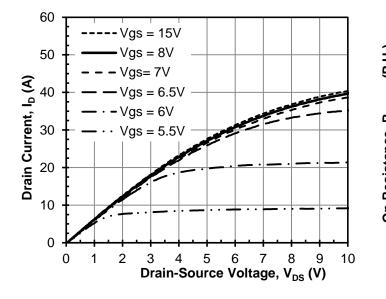

$\begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Parameter	symbol	Test Conditions	Value			Units	
$ \begin{array}{ c c c c c c } \hline \mbox{Output capacitance} & C_{oss} & V_{GS} = 0V, & 106 & PF \\ \hline \mbox{Reverse transfer capacitance} & C_{rss} & f = 100 \text{ MHz} & 3.5 & PF \\ \hline \mbox{Reverse transfer capacitance, energy related} & C_{oss(er)} & V_{DS} = 0V to 800V, & V_{SS} = 0V & 100 & PF \\ \hline \mbox{Effective output capacitance, time related} & C_{oss(tr)} & V_{DS} = 0V to 800V, & V_{SS} = 0V & 18.5 & \muJ \\ \hline \mbox{Total gate charge} & Q_G & V_{DS} = 800V, V_{SS} = 0V & 18.5 & \muJ \\ \hline \mbox{Total gate charge} & Q_G & V_{DS} = 800V, V_{SS} = 0V & 12V & 15 & 0 \\ \hline \mbox{Gate-drain charge} & Q_{GS} & V_{DS} = 800V, I_D = 14A, & 15 & 0 \\ \hline \mbox{Turn-on delay time} & t_{d(ori)} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on delay time} & t_{d(ori)} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on feargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on ff eargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on ff eargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on ff eargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \mbox{Turn-on ff eargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \\mbox{Turn-on ff eargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \\mbox{Turn-on ff eargy} & E_{ON} & V_{DS} = 800V, I_D = 14A, & 322 & 0 \\ \hline \\mbox{Turn-on ff eargy} & E_{ON} & V_{DS} = 200 & 0 \\ $				Min	Тур	Max	Units	
Reverse transfer capacitance C_{rss} $f = 100 \text{ Hz}$ 3.5 Effective output capacitance, energy related $C_{oss(er)}$ $V_{DS} = 0V$ to $800V$, $V_{GS} = 0V$ 57 pF Effective output capacitance, time related $C_{oss(er)}$ $V_{DS} = 0V$ to $800V$, $V_{GS} = 0V$ 100 pF Effective output capacitance, time related $C_{oss(er)}$ $V_{DS} = 800V$, $V_{CS} = 0V$ 100 pF Coss stored energy E_{oss} $V_{DS} = 800V$, $V_{cs} = 0V$ 18.5 μJ Total gate charge Q_{G} $V_{DS} = 800V$, $I_D = 14A$, $V_{GS} = 0V$ to $12V$ 47.5 nC Gate-drain charge Q_{GS} $V_{DS} = 800V$, $I_D = 14A$, $V_{GS} = 0V$ to $12V$ 15 nC Turn-on delay time $t_{d(on)}$ $V_{DS} = 800V$, $I_D = 14A$, $V_{GS} = 0V$ to $12V$ 32 nC Turn-off delay time t_q $Turn-off R_{G,EXT} = 22\Omega$ $Inductive Load,FWD: UJ2D1210T32\muJTurn-off delay timet_qTurn-off R_{G,EXT} = 2\OmegaSC = 00000000000000000000000000000000000$	Input capacitance	-	V _{DS} = 100V,					
Effective output capacitance, energy related $C_{ossterl}$ $V_{DS} = 0V to 800V, V_{CS} = 0V$ 57 pF Effective output capacitance, time related $C_{ossterl}$ $V_{DS} = 0V to 800V, V_{CS} = 0V$ 100 pF Effective output capacitance, time related $C_{ossterl}$ $V_{DS} = 800V, V_{CS} = 0V$ 100 pF Coss stored energy E_{oss} $V_{DS} = 800V, V_{CS} = 0V$ 18.5 μ Total gate charge Q_{G} $V_{DS} = 800V, V_{DS} = 14A, V_{GS} = 0V$ 15.5 nC Gate-drain charge Q_{GS} $V_{DS} = 800V, I_{D} = 14A, V_{GS} = 0V$ 15 nC Gate-source charge Q_{GS} $V_{DS} = 800V, I_{D} = 14A, GAT15nCTurn-on delay timet_{d(orfl)}V_{DS} = 800V, I_{D} = 14A, GAT17nCTurn-off delay timet_{q(orfl)}Turn-off R_{GEXT} = 22\Omega, Inductive Load, FWD: UJ2D1210TT_{T_{J}} = 25^{\circ}C94nCTurn-off delay timet_{d(orfl)}V_{DS} = 800V, I_{D} = 14A, GAT266\muTurn-off delay timet_{d(orfl)}V_{DS} = 800V, I_{D} = 14A, GAT266\muTurn-off delay timet_{d(orfl)}V_{DS} = 800V, I_{D} = 14A, GAT266\muTurn-off delay timet_{d(orfl)}V_{DS} = 800V, I_{D} = 14A, GAT21nRise timet_{r}V_{DS} = 800V, I_{D} = 14A, GAT21nTurn-off delay timet_{d(orfl)}Turn-off R_{G,EXT} = 2\Omega, Inductive Load, FWD: UJD21210TT_{T} = 150^{\circ}C21T$	Output capacitance				106		pF	
Effective output capacitance, energy related $C_{oss}(er)$ $V_{OS} = 0V$ 57 pF Effective output capacitance, time related $C_{oss}(tr)$ $V_{DS} = 0V$ to $800V$, $V_{GS} = 0V$ 100 pF C_{OSS} stored energy E_{oss} $V_{DS} = 800V$, $V_{GS} = 0V$ 18.5 μJ Total gate charge Q_{G} Q_{S} $V_{DS} = 800V$, $V_{GS} = 0V$ 18.5 μJ Gate-drain charge Q_{GG} $V_{DS} = 800V$, $V_{DS} = 14A$, $V_{SS} = 0V$ 15 nC Gate-drain charge Q_{GS} $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 32 nC Turn-ondelay time $t_{d(on)}$ $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 32 nC Turn-off delay time $t_{d(off)}$ $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 32 nC Turn-off delay time $t_{d(off)}$ $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 32 nC Turn-off delay time $t_{d(off)}$ $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 266 PF Turn-off energy E_{OFF} $T_J = 25^{\circ}C$ 56 μJ Turn-off delay time $t_{d(off)}$ $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 211 μJ Rise time t_r $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 221 nS Turn-off delay time $t_{d(off)}$ $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 211 nS Rise time t_r $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 211 nS Turn-off delay time $t_{d(off)}$ $V_{DS} = 800V$, $I_D = 14A$, $Gate$ 211 nS	Reverse transfer capacitance	C _{rss}	f = 100kHz		3.5			
Effective output capacitance, time related $C_{oss}(r)$ $V_{GS} = 0V$ 100 pF C_{OSS} stored energy E_{oss} $V_{DS} = 800V, V_{GS} = 0V$ 18.5 μ Total gate charge Q_G $V_{DS} = 800V, V_D = 14A, V_{GS} = 0V$ 15nCGate-drain charge Q_{GS} $V_{DS} = 800V, I_D = 14A, V_{GS} = 0V$ 15nCGate-drain charge Q_{GS} $V_{DS} = 800V, I_D = 14A, V_{GS} = 0V$ 15nCGate-drain charge Q_{GS} $V_{DS} = 800V, I_D = 14A, Gate Driver = 0V to 12V$ 15nCTurn-on delay time $t_{d(off)}$ $V_{DS} = 800V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, Turn-on R_{G,EXT} = 2Q, S94nsFall timet_fTurn-off R_{G,EXT} = 22Q19nsnsTurn-on energyE_{ON}Inductive Load, FWD: UJ2D1210T56\muTurn-on delay timet_{d(off)}V_{DS} = 800V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 14A, Gate Driver = 0V to +12V, Turn-on R_{G,EXT} = 2Q, T_J = 000V, I_D = 00V, I_D = 00V$	Effective output capacitance, energy related	C _{oss(er)}			57		pF	
Total gate charge Q_G V_{DS} =800V, I_D = 14A, V_{GS} =0V to 12V47.5nCGate-drain charge Q_{GD} V_{DS} =800V, I_D = 14A, V_{GS} =0V to 12V15nCGate-source charge Q_{GS} V_{DS} =800V, I_D = 14A, V_{DS} =800V, I_D = 14A, Gate Driver =0V to 12V32 I_T Turn-on delay time t_q T_r T_r I_T I_T Turn-off delay time t_q T_r I_T I_T I_T Fall time t_r T_r I_S I_S I_S Turn-off energy E_{ON} E_{OTAL} I_T I_S I_S Turn-off delay time $t_{d(off)}$ V_{DS} =800V, I_D =14A, Gate $FWD: UJ2D1210T$ T_J = 25°C I_S I_S I_S Turn-off delay time $t_{d(off)}$ V_{DS} =800V, I_D =14A, Gate $Driver =0V to +12V,$ $Turn-off delay timeI_{d(off)}I_{DS}I_STurn-off delay timet_{d(off)}V_{DS}=800V, I_D=14A, GateDriver =0V to +12V,Turn-off G_{SEXT} = 2\Omega,I_DZI_DZFall timet_qI_{d(off)}I_{DS}I_DZI_DZTurn-off G_{SEXT} = 2\Omega,I_DZI_DZI_DZI_DZFall timet_qI_{GOFF}I_{DS}I_DZI_DZTurn-off G_{SEXT} = 2\Omega,I_DZI_DZI_DZI_DZTurn-off G_{SEXT} = 2\Omega,I_DZI_DZI_DZI_DZTurn-off G_{SEXT} = 2\Omega,I_DZI_DZI_DZI_DZ$	Effective output capacitance, time related	C _{oss(tr)}			100		pF	
Gate-drain charge Q _{GD} V _{DS} =800V, I _D = 14A, V _{GS} =0V to 12V 15 nC Gate-source charge Q _{GS} V _{DS} =800V, I _D = 14A, V _{GS} =0V to 12V 15 nC Turn-on delay time t _{d(on)} V _{DS} =800V, I _D = 14A, Gate Driver = 0V to 12V, Turn-on R _{G,EXT} = 2Ω, Turn-off delay time 32 17 nC Fall time t _{d(off)} Turn-on R _{G,EXT} = 2Ω, Turn-on R _{G,EXT} = 2Ω, Turn-off R _{G,EXT} = 2Ω, Turn-on delay time 19 115 nS Turn-on delay time t _{d(off)} Turn-off R _{G,EXT} = 2Ω, Turn-off R _{G,EXT} = 2Ω, Turn-off delay time 19 115 nS Turn-on delay time t _{d(on)} V _{DS} =800V, I _D =14A, Gate Driver = 0V to +12V, Turn-on R _{G,EXT} = 2Ω, Turn-off delay time 32 µJ Fall time t _r V _{DS} =800V, I _D =14A, Gate Driver = 0V to +12V, Turn-on R _{G,EXT} = 2Ω, Turn-off R _{G,EXT} = 2Ω, Turn-	C _{oss} stored energy	E _{oss}	$V_{DS} = 800V, V_{GS} = 0V$		18.5		μ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total gate charge	Q _G			47.5		nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-drain charge	Q _{GD}			15			
NormalizationNorma	Gate-source charge	Q _{GS}	V _{GS} -0V to 12V		15			
Rise time t_r Driver =0V to +12V, Turn-off delay time17nsFall time $t_{d(off)}$ t_{rot} $Turn-on R_{G,EXT} = 2\Omega,$ Turn-on R_{G,EXT} = 22 Ω 19 $urn-on R_{G,EXT} = 2\Omega,$ Turn-off R_{G,EXT} = 22 Ω 19 $urn-on R_{G,EXT} = 2\Omega,$ Turn-off R_{G,EXT} = 22 Ω 19 μ Turn-off energy E_{ON} E_{OFF} $run-off R_{G,EXT} = 2\Omega,$ Turn-off energy 266 μ Turn-on delay time E_{OFF} $r_{J} = 25^{\circ}C$ 322 μ Turn-off delay time $t_{d(on)}$ v_{DS} =800V, I_D =14A, Gate Driver =0V to +12V, Turn-on $R_{G,EXT} = 2\Omega,$ 32 ns Fall time t_r $Turn-on R_{G,EXT} = 2\Omega,$ Turn-off $R_{G,EXT} = 2\Omega,$ 102 ns Fall time t_r $Turn-on R_{G,EXT} = 2\Omega,$ Turn-off $R_{G,EXT} = 2\Omega,$ 102 ns Turn-off energy E_{ON} E_{OFF} $run-off R_{G,EXT} = 2\Omega,$ $FWD: UJ2D1210TT_J = 150^{\circ}C290\mu$	Turn-on delay time	t _{d(on)}			32		_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise time	t _r	Driver =0V to +12V,		17			
Turn-on energy E_{ON} Inductive Load, FWD: UJ2D1210T $T_J = 25^{\circ}C$ 266 μ Turn-off energy E_{OFF} $F_{WD:} UJ2D1210T$ $T_J = 25^{\circ}C$ 56 μ Turn-on delay time $t_{d(on)}$ $V_{DS}=800V, I_D=14A, Gate$ Driver =0V to +12V, Turn-onff delay time 32 32 Turn-off delay time $t_{d(off)}$ $Turn-on R_{G,EXT} = 2\Omega$, Inductive Load, FWD: UJ2D1210T $T_J = 150^{\circ}C$ 102 ns	Turn-off delay time	t _{d(off)}			94			
Turn-off energy E_{ON} FWD: UJ2D1210T $Z66$ μ Turn-off energy E_{OFF} $FWD: UJ2D1210T$ 56 μ Total switching energy E_{TOTAL} $T_J = 25^{\circ}C$ 322 322 Turn-on delay time $t_{d(on)}$ $V_{DS}=800V, I_D=14A, Gate$ 32 32 Rise time t_r $T_{OFF} = 0V to +12V,$ $Turn-on R_{G,EXT} = 2\Omega,$ 102 ns Fall time t_f $Turn-off R_{G,EXT} = 22\Omega,$ 102 102 ns Turn-off energy E_{ON} E_{OFF} $FWD: UJ2D1210T$ 78 μ Turn-off energy E_{OFF} $T_J = 150^{\circ}C$ 78 μ	Fall time	t _f	-,		19			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-on energy	E _{ON}	FWD: UJ2D1210T		266			
Total switching energy E_{TOTAL} 322Turn-on delay time $t_{d(on)}$ V_{DS} =800V, I_D =14A, Gate32Rise time t_r V_{DS} =800V, I_D =14A, Gate21Turn-off delay time $t_{d(off)}$ Turn-on $R_{G,EXT} = 2\Omega$,102Fall time t_f Turn-off $R_{G,EXT} = 22\Omega$ 21Turn-on energy E_{ON} Inductive Load, FWD: UJ2D1210T290Turn-off energy E_{OFF} $T_J = 150^{\circ}C$ 78	Turn-off energy	E _{OFF}			56			
Rise time t_r $V_{DS}=800V, I_D=14A, Gate$ 21 nsTurn-off delay time $t_{d(off)}$ Turn-on $R_{G,EXT} = 2\Omega$, 102 102 nsFall time t_f Turn-off $R_{G,EXT} = 22\Omega$ 21 102 102 102 Turn-on energy E_{ON} Inductive Load, FWD: UJ2D1210T $FWD: UJ2D1210T$ 78 μJ	Total switching energy	E _{TOTAL}			322			
Kise time t_r Driver =0V to +12V, Turn-off delay timeDriver =0V to +12V, Turn-on R_{G,EXT} = 2\Omega,Driver =0V to +12V, Turn-on R_{G,EXT} = 2\Omega,Inductive Load, FWD: UJ2D1210TDriver =0V to +12V, Turn-off R_{G,EXT} = 2\Omega,Inductive Load, FWD: UJ2D1210TInductive Load, FWD: UJ2D1210TPrice PointPrice P	Turn-on delay time	t _{d(on)}	Driver =0V to +12V, Turn-on $R_{G,EXT} = 2\Omega$, Turn-off $R_{G,EXT} = 22\Omega$ Inductive Load, FWD: UJ2D1210T		32			
Turn-off delay time $t_{d(off)}$ Turn-on $R_{G,EXT} = 2\Omega$, Turn-off $R_{G,EXT} = 2\Omega$, Turn-off $R_{G,EXT} = 2\Omega$, Turn-off $R_{G,EXT} = 2\Omega$, Inductive Load, FWD: UJ2D1210T T_J = 150°C102Turn-off delay time t_f Turn-off $R_{G,EXT} = 2\Omega$, Turn-off $R_{G,EXT} = 2\Omega$, 	Rise time	t _r			21			
Fall time t_f Turn-off $R_{G,EXT} = 22\Omega$ 21Turn-on energy E_{ON} Inductive Load, FWD: UJ2D1210T $T_J = 150^{\circ}C$ 290Inductive Load, FWD: UJ2D1210T 	Turn-off delay time	t _{d(off)}			102		115	
Turn-off energy E_{OFF} FWD: UJ2D1210T250Turn-off energy E_{OFF} $T_{J} = 150^{\circ}C$ 78 μJ	Fall time	t _f			21			
Turn-off energy E_{OFF} $T_{J} = 150^{\circ}C$ 78 μ	Turn-on energy	E _{ON}			290			
	Turn-off energy	E _{OFF}			78		μ	
	Total switching energy	E _{TOTAL}			368]	

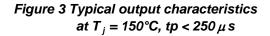

Thermal Characteristics

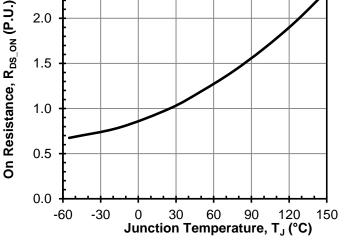

Parameter	symbol	Test Conditions		Units		
			Min	Тур	Max	Units
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.85	1.1	°C/W

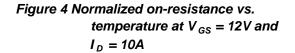

Datasheet

Typical Performance Diagrams

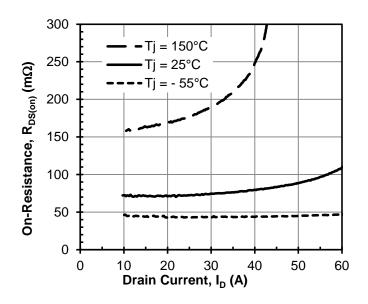


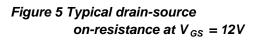


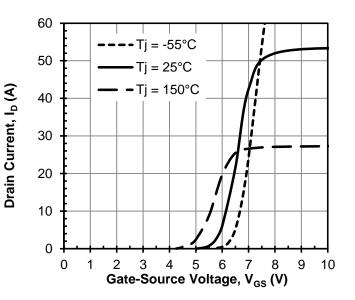


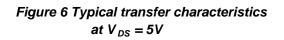

2.5

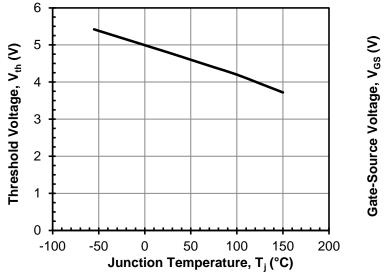
2.0

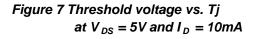









Datasheet



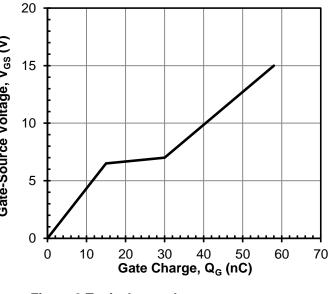


Figure 8 Typical gate charge at $V_{DS} = 800V$ and $I_D = 14A$

Vgs = 0V

Vgs= 5V

Vgs = 8V

Vgs = 15V

-3

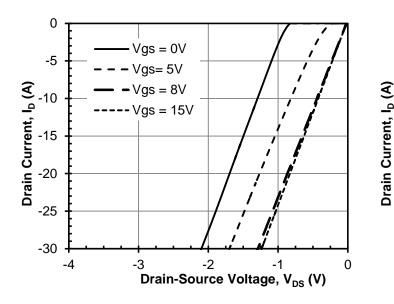
0

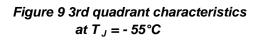
-5

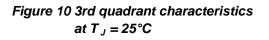
10

-15

-20

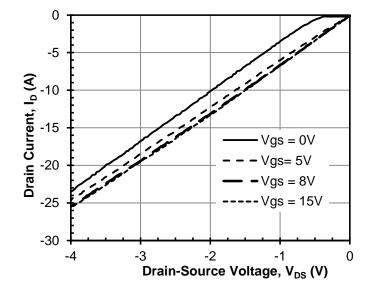

-25

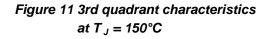

-30

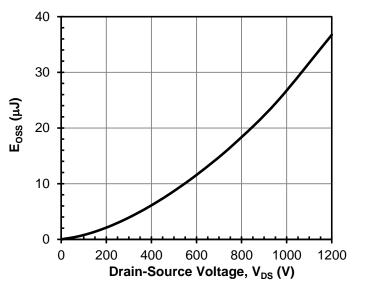

-4

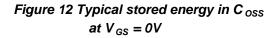
Datasheet

0






-2


Drain-Source Voltage, V_{DS} (V)

-1

Datasheet

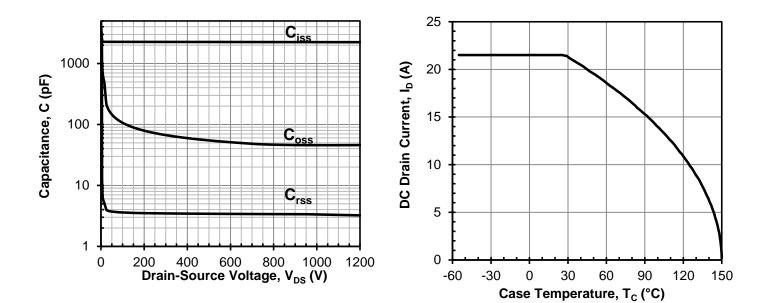
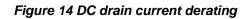



Figure 13 Typical capacitances at 100kHz and V $_{\rm GS}$ = 0V

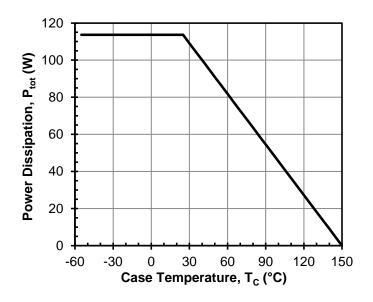


Figure 15 Total power dissipation

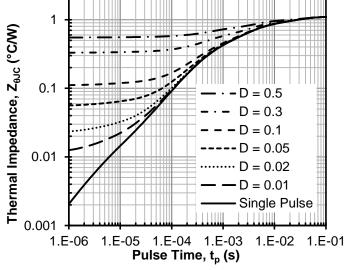
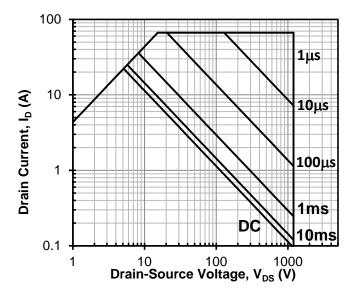
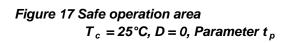




Figure 16 Maximum transient thermal impedance

Datasheet

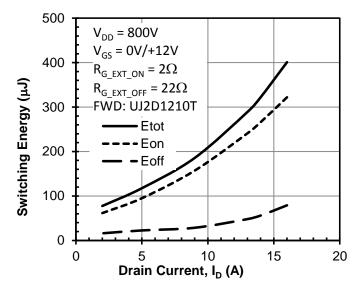
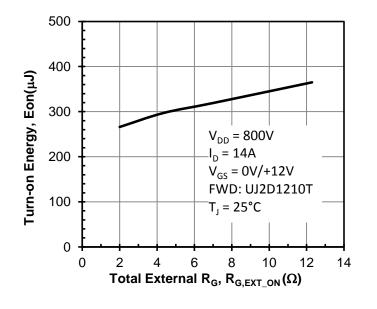
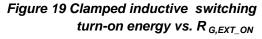




Figure 18 Clamped inductive switching energy vs. drain current at $T_J = 25^{\circ}C$

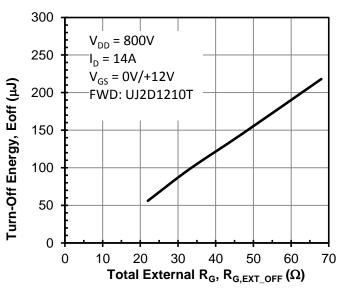


Figure 20 Clamped inductive switching turn-off energy vs. R_{G,EXT_OFF}

Datasheet

Applications Information

SiC cascodes are enhancement-mode power siwtches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance (R_{DS(on)}), output capacitance (Coss), gate charge (Qg), and reverse recovery charge (Qrr) leading to low conduction and switching losses. The SiC cascodes also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the cascode is working in the diode mode in order to achieve the optimum reverse recover performance. For more information on cascode operation, see www.unitedsic.com.

Disclaimer

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by UnitedSiC manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF