

Please visit our website for more information: www.upi-semi.com

The contents of this document are provided in connection with uPI Semiconductor Corp. ("uPI") products. uPI makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice.

No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights, is granted by this publication. Except as provided in uPI's terms and conditions of sale for such products, uPI assumes no liability whatsoever, and uPI disclaims any express or implied warranty relating to sale and/or use of uPI products, including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. uPI products are not designed, intended, authorized or warranted for use as components in systems intended for medical, life-saving, or life sustaining applications. uPI reserves the right to discontinue or make changes to its products at any time without notice.

uPI, uPI design logo, and combinations thereof, are trademarks or registered trademarks of uPI Semiconductor Corp. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

N-Channel 40V Fast Switching MOSFET

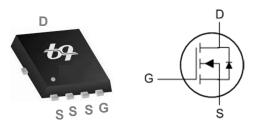
General Description

The QN4101M6N is a high performance trench N-channel MOSFET which utilizes extremely high cell density to provide low Rdson and gate charge characteristics. It is ideally suited to support synchronous buck converter applications.

The QN4101M6N meets RoHS and Green Product requirements while supporting full function reliability.

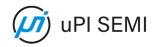
Features

- ✓ Advanced high cell density Trench technology
- ✓ Green Device Available


Product Summary

V _{DS}	R _{DS(ON)} max (V _{GS} =10V)	I _D (T _C =25 °C)		
40V	2.3mΩ	136A		

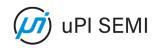
Applications


- ✓ Synchronous rectifier for Consumer/Computing /Industry Power Supply
- ✓ Motor
- ✓ Load Switch

Pin Configuration

Ordering Information

Order Number	Package Type	Top Marking	
QN4101M6N	PRPAK5X6	Weekly Code Yearly Code Logo Pin 1 dot Sequence Assembly Code	



Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	40	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	136	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	86	Α
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	23	Α
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	18	Α
I _{DM}	Pulsed Drain Current ²	272	Α
EAS	Single Pulse Avalanche Energy ³	526.7	mJ
I _{AS}	Avalanche Current	45.9	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	69	W
P _D @T _A =25°C	Total Power Dissipation ⁴	2	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{ heta JA}$	Thermal Resistance (> 10S)Junction-Ambient ¹	13	17	°C/W
$R_{\theta JA}$	Thermal Resistance Junction-Ambient ¹	45	59	°C/W
R _{eJC}	Thermal Resistance Junction-Case ¹	1.8	2.3	°C/W

N-Channel Electrical Characteristics

N-Ch	N-Channel Electrical Characteristics: (T _J =25 °C, unless otherwise noted) ▲					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	40			V
$\triangle BV_{DSS} / \triangle T_{J}$	BVDSS Temperature Coefficient	Reference to 25°C, I _D =1mA		0.019	-	V/°C
D	Static Drain-Source	V _{GS} =10V, I _D =30A		1.8	2.3	O
$R_{DS(ON)}$	On-Resistance ²	V _{GS} =4.5V, I _D =20A		2.4	3.1	mΩ
V _{GS(th)}	Gate Threshold Voltage	\/ -\/ -250uA	1.2		2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_{D}=250uA$		-4.8		mV/°C
ı	Drain Course Leakage Current	V _{DS} =32V, V _{GS} =0V,T _J =2 <mark>5°C</mark>			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =32V, V _{GS} =0V,T _J =55°C			5	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V, I _D =20A		53		S
R_g	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		1.0		Ω
Q _g	Total Gate Charge (10V)	V _{DS} =20V, V _{GS} =10V, I _D =20A		54.0		
Q_g	Total Gate Charge (4.5V)			24.4		
Q_{gs}	Gate-Source Charge	V _{DS} =20V, V _{GS} =4.5V, I _D =20A		12.3		nC
Q_gd	Gate-Drain Charge			5.8		
$t_{d(on)}$	Turn-On Delay Time			12.4		
t _r	Rise Time	V_{DS} =20V, V_{GS} =10V, R_{G} =3.3 Ω ,		43.3		
$t_{\sf d(off)}$	Turn-Off Delay Time	I _D =20A		42.4		ns
t _f	Fall Time			7.2		
C _{iss}	Input Capacitance			3844		
C _{oss}	Output Capacitance	V _{DS} =20V, V _{GS} =0V, f=1MHz		706		pF
C _{rss}	Reverse Transfer Capacitance			38		

Guaranteed Avalanche Characteristics


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =25V , L=0.5mH , I _{AS} =33A	272.25		1	mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current 1,6	\/ -\/ -0\/ Force Current	-	136		Α
I _{SM}	Pulsed Source Current ^{2,6}	V _G =V _D =0V, Force Current		272		Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V, I _S =1A, T _J =25°C)	0.7	1.2	V
t _{rr}	Reverse Recovery Time	I _F =20A, di/dt=100 <mark>A</mark> /μs,		36		nS
Q _{rr}	Reverse Recovery Charge	T _J =25℃		32		nC

Note:

- 1. Test data conducted with surface mount attachment to 1 inch², FR-4 board utilizing 2oz copper
- 2. Pulse Test. Pulse width \leq 300uS, duty cycle \leq 2%
- 3. EAS data is a maximum rating. The test condition is $V_{DD}=25V$, $V_{GS}=10V$, L=0.5mH
- 4. The power dissipation is limited by a 150°C maximum junction temperature
- 5. The Min. value is 100% EAS tested guarantee
- 6. The data is theoretically the same as I_D and I_{DM} . In real applications, it will be limited by total power

Typical Characteristics

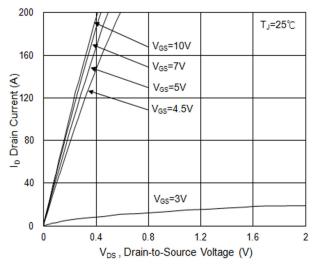


Fig.1: Typical Output Characteristics

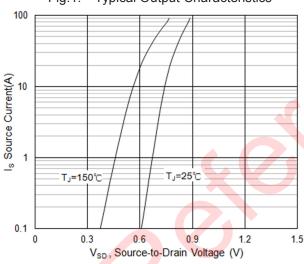


Fig.3: Forward Characteristics of Reverse

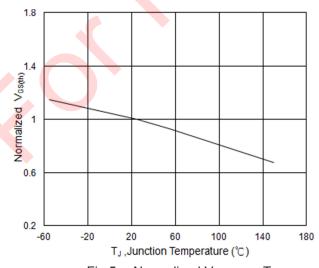


Fig.5: Normalized $V_{GS(th)}$ vs. T_J

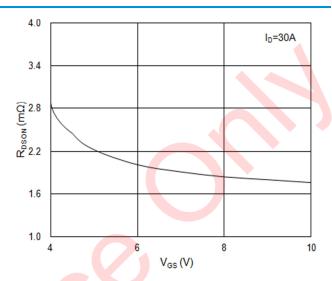


Fig.2: On-Resistance vs. Gate-Source

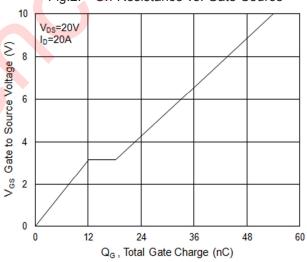


Fig.4: Gate-Charge Characteristics

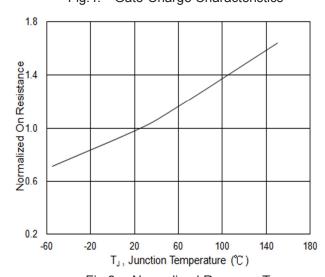



Fig.6: Normalized R_{DSON} vs. T_J

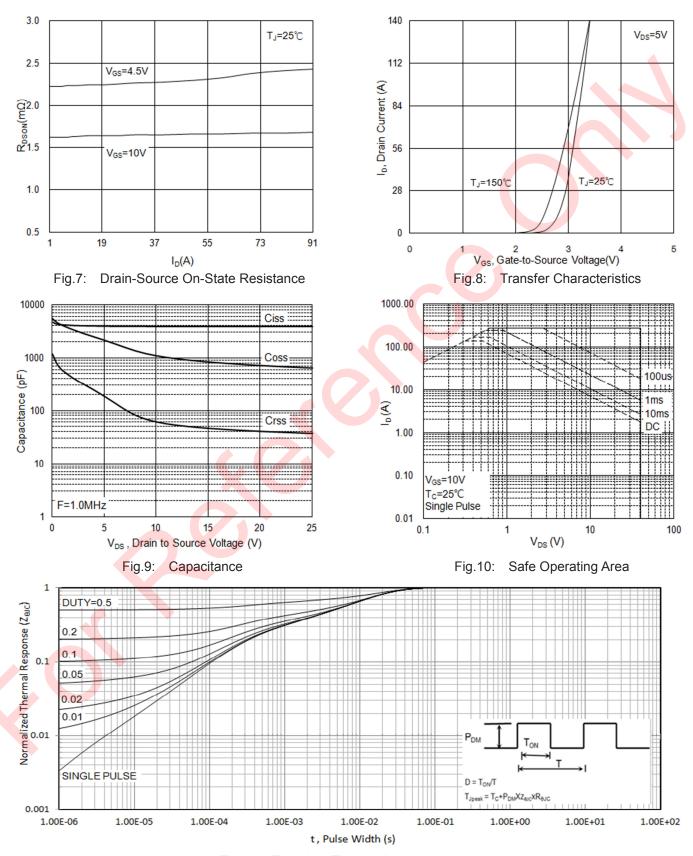


Fig.11: Transient Thermal Impedance

Legal Notice

The contents of this document are provided in connection with uPI Semiconductor Corp. ("uPI") products. uPI makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice.

No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights, is granted by this publication. Except as provided in uPI's terms and conditions of sale for such products, uPI assumes no liability whatsoever, and uPI disclaims any express or implied warranty relating to sale and/or use of uPI products, including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. uPI products are not designed, intended, authorized or warranted for use as components in systems intended for medical, life-saving, or life sustaining applications. uPI reserves the right to discontinue or make changes to its products at any time without notice.

Copyright© 2019, uPI Semiconductor Corp. All rights reserved. uPI, uPI design logo, and combinations thereof, are trademarks or registered trademarks of uPI Semiconductor Corp.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

uPI Semiconductor Corp.

9F., No. 5, Taiyuan 1st St. Zhubei City, Hsinchu, Taiwan, R.O.C.

TEL: 886.3.560.1666 FAX: 886.3.560.1888

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by uPI Semiconductor manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3