

DATENBLATT

Sach Nr.: T60404-N4644-X300

1 – 5 – 8 – 12 – 25 A Stromsensor-Modul

Für die elektronische Strommessung: DC, AC, Impuls..., mit galvanischer Trennung zwischen dem Primärkreis (Starkstromkreis) und dem Sekundärkreis (elektronischer Kreis)

Datum: 18.07.2005

Kunde: Typenelement Kd. Sach Nr.: Seite 1 von 2

Typenbeschreibung

- Stromsensor nach dem Kompensationsprinzip mit magnetischer Sonde
- Leiterplattenmontage
- Gehäuse und Werkstoffe ULgelistet

Eigenschaften

- · sehr gute Meßgenauigkeit
- sehr kleiner Offsetstrom
- sehr geringe Temperaturabhängigkeit und Langzeitdrift des Offsetstroms
- sehr kleine Hysterese des Offsetstroms
- kurze Ansprechzeit
- weiter Frequenzbereich
- kompakte Bauform

Anwendungen

min. typ. max.

Für den anwendungstypischen stationären Einsatz im Industriebereich wie:

- Drehstrom- und Servoantriebe, Generatoren
- Stromrichter f
 ür Gleichstromantriebe
- Batteriebetriebene Anwendungen
- Leistungsschaltnetzteile
- Stromversorgungen für Schweißanlagen
- Unterbrechungsfreie Stromversorgungen (USV)

Einheit

Elektrische Daten - Kennwerte

I _{PN}	Primärnennstrom, effektiv	25	Α
R_{M}	Meßwiderstandsbereich	100 500	Ω
I _{SN}	Sekundärnennstrom, effektiv	25	mA
KN	Übersetzungsverhältnis	15 : 1000	

Meßgenauigkeit - Dynamisches Verhalten

		min.	typ.	max.	Einheit
I _{P,max}	Maximaler Meßbereich @ R _M =100Ω	-65		+65	Α
X*	Genauigkeit @ I _{PN} , T _A = 25°C		0,1	0,5	%
ϵ_{L}	Linearität			0,1	%
I ₀ *	Offsetstrom @ I _P =0, T _A = 25°C		0,02	0,1	mA
t _r	Ansprechzeit			1	μs
$\Delta t (I_{P,max})$	Verzögerungszeit bei di/dt = 100 A/μs		0,25	1	μs
f	Frequenzbereich	DC200)		kHz

Allgemeine Daten

T_A	Umgebungstemperatur	-40		+85	°C
T_S	Lagertemperaturbereich	-40		+85	°C
m	Masse		13,5		g
V_{C}	Versorgungsspannung	±14,25	±15	±15,75	V
Ic	Versorgungsstrom im Leerlauf		16,5	18	mA
V_b	Bemessungsisolationsspannung,				
	nach EN50178 verstärkte Isolierung				
	Isolierstoffklasse 1, Verschmutzungsgrad 2				
	Netzstromkreis, effektiv			600	V
	Nicht-Netzstromkreis, Spitzer	nwert		1020	V

Maximale Dauer- und Spitzenströme bei bestimmten Temperaturen

T _A	50 °C	60 °C	70 °C	85 °C
I _P	50 A	40 A	30 A	25 A
I _{P,max}	65 A	65 A	65 A	65 A
Rм	100 Ω	100 Ω	100 Ω	100 Ω

Bei den mit * gekennzeichneten Daten handelt es sich um endgeprüfte Werte, andere Werte sind typgeprüft.

Datum	Name	Index	Änderung						
18.07.05	Tr.	85	Ergänzende A	gänzende Angaben, Elektrische Daten: Änderung Vctot und Ck durchgeführt. ÄA- 890					
24.01.05	24.01.05 Bd. 84 Rundstift (Ø 0,8 mm) wird durch Z-Stift (Flachrundstift 0,88*0,6) ersetzt. ÄA-772								
Hrsg.: KB-FB FT Bear		• • •		KB-E: Len	KB-PM IA: KRe.		freig.: Tr. released		

DATENBLATT

Sach Nr.: T60404-N4644-X300

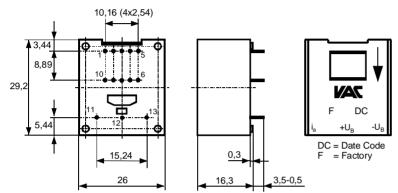
K-Nr

1-5-8-12-25 A Stromsensor-Modul

Für die elektronische Strommessung: DC, AC, Impuls..., mit galvanischer Trennung zwischen dem Primärkreis (Starkstromkreis) und dem Sekundärkreis (elektronischer Kreis)

Datum: 18.07.2005

Kunde: Typenelement

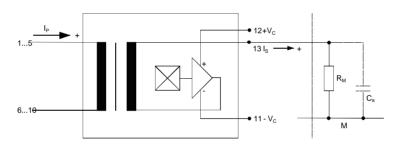

Kd. Sach Nr.:

Seite 2 von 2

Maßbild (mm):

Freimaßtoleranz DIN ISO 2768-c

Toleranz der Stiftabstände $\pm 0,3$ mm Stift Nr.1-10 = \emptyset 1,0 Ziffern 1 - 13 nicht aufgedruckt (Tolerances grid distance) Nr.11,12,13 = 0,88 x 0,6 Numbers 1 - 13 not imprinted


Anschlüsse:

1...10 Ø 1 mm 11...13 0,88 x 0,6mm

Beschriftung: marking

Anschlußschema

Beschaltungsmöglichkeiten (Werte bei T_A = 85°C)

Anz. Primär windungen		nstrom maximal	Ausgangsstrom nominal	Übersetzungs- verhältnis	Meß- widerstand		enauigkeit samt	Beschaltung
N	I _{PN} [A]	I _{P,max} [A]	I _{SN} [mA]	K _N	$R_{M}[W]$	X _G (I _{PN}) [%]	X _G (I _{PN} /2) [%]	
1	25	65	25	1:1000	100	1,1	1,7	1 5 10 6 >
2	12	32	24	2:1000	100	1,1	1,7	5 5 6 7 6 7
3	8	21	24	3:1000	100	1,1	1,7	10 5
4	6	16	24	4:1000	100	1,1	1,7	10 5
5	5	13	25	5:1000	100	1,1	1,7	> 1 10 5 6>
5	1	13	5	5:1000	100	3,5	6,5	10 5

Weitere ergänzende Angaben sind auf Anfrage erhältlich. Dieses Datenblatt stellt keine Garantieerklärung nach BGB §443 dar.

Hrsg.: KB-FB FT	Bearb: Tr	KB-E: Len	KB-PM IA: KRe.	freig.: Tr.
editor	designer	check	check	released

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Current Sensors category:

Click to view products by Vacuumschmelze manufacturer:

Other Similar products are found below:

CSDD1EG CSDD1FR CSLA2ELI CSNP661-007 ACS723LLCTR-10AU-T SCL15 10006 ACS722LLCTR-40AU-T ACS723LLCTR-05AB-T L18P003S05 S25P100D15Y ACS723LLCTR-45AB-T S23P50100D15 LA02P021S03 LA03P035S05 LA02P085S03 LA01M041S05 LA03P021S05 CSNE151-003 L18P003S12 L12P025D15 L18P020S05 S18540-B-FWR T60404-N4646-X400 T60404-N4646-X661 T60404-N4646-X662 T60404-N4646-X664 DRV421RTJT CSLA2GE S23P50/100D15M1 ACS723LLCTR-40AU-T PA3202NL T60404-N4646-X651 P8203NLT CSNJ481-001 PA3208NL PA1005.125QNLT PA0368.125NLT PA1005.050QNLT PE-68383NLT MLX91209LVA-CAA-000-SP L37S200D15M PA1005.040QNLT PA1005.100QNLT T60404-N4644-X400 PA1005.070NLT T60404-N4644-X200 P8206NLT T60404-N4644-X101 T60404-N4646-X401 PA1005.070QNLT