
VACUUMSCHMELZE	SPECIFICATION	Item no.:	T60404-N4	646-X664
۲-no.: 24514	50 A Current Sensor for 5V- Supply For electronic current measurement: DC, AC, pulsed, mixed, with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)	Voltage	Date:	11.08.2014
Customer: Stand	dard type Customer	rs Part no.:	Page 1	of 2
Description Closed loop (compe Current Sensor with field probe Printed circuit board Casing and materia	Characteristics ensation) • Excellent accuracy n magnetic • Very low offset current of mounting • Very low temperature depender	Applications Mainly used fo applications: ncy and offset • AC variate drives rrent • Static cor • Battery su • Switched • Power Su	-	on in industrial d servo motor or drives lies (SMPS) applications
Electrical data – Ra		50		۸
I _{PN}	Primary nominal r.m.s. current	50) _{Ref} ± (0.625*I _P /I _{PN})	A V
V _{out}	Output voltage @ I _P			V
V _{out} V _{Ref}	Output voltage @ I _P =0, T _A =25°C External Reference voltage range		Ref ± 0.000725	V
V Ref	Internal Reference voltage	-	+ .5 ±0.005	V
K _N	Turns ratio		3 : 1400	v
I NN				
<u> Accuracy – Dynam</u>	ic performance data	min. typ.	max.	Unit
I _{P,max}	Max. measuring range	±150	max.	Unit
X	Accuracy @ I _{PN} , T _A = 25°C		0.7	%
ε∟	Linearity		0.1	%
V _{out} - V _{Ref}	Offset voltage @ I _P =0, T _A = 25°C		±0.725	mV
Δ V _o / V _{Ref} / Δ T	Temperature drift of Vout @ IP=0, VRef =2,5V	/, T _A = -4085°C 0.7	7	ppm/°C
t _r	Response time @ 90% von I _{PN}	300		ns
∆t (I _{P,max})	Delay time at di/dt = 100 A/ μ s	200		ns
f	Frequency bandwidth	DC200		kHz
Seneral data				
		min. typ.	max.	Unit
T _A	Ambient operating temperature	-40	+85	°C
Ts	Ambient storage temperature	-40	+85	°C
m	Mass	12		g
Vc	Supply voltage	4.75 5	5.25	V
I _C	Current consumption	15		mA
	Constructed and manufactored and tested i Reinforced insulation, Insulation material gr)-5-1 (Pin 1 - 6 to F	Pin 7 – 10)
S _{clear}	Clearance (component without solder pad)	7.4		mm
Screep	Creepage (component without solder pad)	8.0 DMC	200	mm
V	System voltageovervoltage category 3Working voltage(tabel 7 acc. to EN6180	RMS	300	V
V _{sys} Vwork		RMS	650	V
V _{sys} V _{work}	overvoltage category 2	IXIVIO		
	overvoltage category 2 Rated discharge voltage	peak value	1320	V
V _{work} U _{PD}	Rated discharge voltage			
V _{work} U _{PD}	v v <i>i</i>	peak value	1320	V V _{AC}
V _{work} U _{PD} Max. potential di	Rated discharge voltage	peak value	1320	
V _{work} U _{PD} Max. potential di	Rated discharge voltage	peak value RMS	1320 600	V _{AC}
V _{work} U _{PD} Max. potential di Date Name Is	Rated discharge voltage	peak value RMS	1320 600	V _{AC}

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden Any offenders are liable to pay all relevant damages.

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden Any offenders are liable to pay all relevant damages.

VACUUMSCHMELZE	Additional Information	Item No.:	Г60404-N464	6-X664
No.: 24514	50 A Current Sensor for 5V- Supp For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic Isolation between the primary circuit (high power) and the secondary circuit	bly Voltage	Date:	11.08.2014
ustomer:	Custome	ers Part No.:	Page 1	of 2
ectrical Data				11
V _{Ctot}	Maximum supply voltage (without function)	<mark>min. typ.</mark>	max. 7	Unit V
lc	Supply Current with primary current	15mA +lp*K _N +V _c	ut/RL	mA
lout,SC	Short circuit output current	±20		mA
R _P	Resistance / primary winding @ T _A =25°C	1		mΩ
Rs	Secondary coil resistance @ T _A =85°C		35	Ω
R _{i,Ref}	Internal resistance of Reference input	670		Ω
R _i ,(V _{out})	Output resistance of Vout		1	Ω
RL	External recommended resistance of V_{out}	1		kΩ
CL	External recommended capacitance of Vout		500	pF
ΔΧ _{ΤΙ} / ΔΤ	Temperature drift of X @ $T_A = -40 \dots +85 \circ C$		40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:	2	6	mV
V _{0t}	Longtermdrift of V ₀	1		mV
V _{0T}	Temperature drift von V ₀ @ T _A = -40+85			mV
V _{0H}	Hysteresis of V _{out} @ I _P =0 (after an overload of	of 10 x I _{PN})	1	mV
$\Delta V_0 / \Delta V_C$	Supply voltage rejection ratio		1	mV/V
V _{oss}	Offsetripple (with 1 MHz- filter first order)		35	mV
V _{oss}	Offsetripple (with 100 kHz- filter firdt order)	2	5	mV
V _{oss}	Offsetripple (with 20 kHz- filter first order)	0.6	1	mV
				۳ ۲
k	Maximum possible coupling capacity (prima Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc		10 30g	pF
<u>ispection</u> (Measu V _{out} (SC) ([\]	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref	ours room temperature), SC = signifi	10 30g cant characteristi 625±0,7%	c mV
<u>spection</u> (Measu V _{out} (SC) (\ V _{out} –V _{Ref} (I _P =0) (\	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at a V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage	ours room temperature), SC = signifi	10 30g cant characteristi 625±0,7% ± 0.725	c mV mV
<u>spection</u> (Measu V _{out} (SC) (\ V _{out} –V _{Ref} (I _P =0) (\ V _d (\	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10	ours room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz)	10 $30g$ cant characteristi $625\pm0,7\%$ ± 0.725 1.5	c mV mV kV
I <mark>spection</mark> (Measu V _{out} (SC) (\ V _{out} –V _{Ref} (I _P =0) (\ V _d (\	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at a V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s	ours room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz)	10 30g cant characteristi 625±0,7% ± 0.725	c mV mV
<mark>Nspection</mark> (Measu V _{out} (SC) (N V _{out} –V _{Ref} (Ip=0) (N V _d (N V _e (A	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS)	ours room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz)	10 30g cant characteristi $625\pm0,7\%$ ± 0.725 1.5 1400	c mV mV kV
n <u>spection</u> (Measu V _{out} (SC) (\ V _{out} –V _{Ref} (I _P =0) (\ V _d (\ V _e (<i>A</i> V _e (<i>A</i>	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS)	ours room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS)	10 30g cant characteristi $625\pm0,7\%$ ± 0.725 1.5 1400	c mV mV kV
N <mark>spection</mark> (Measu V _{out} (SC) (\ V _{out} –V _{Ref} (I _P =0) (\ V _d (\ V _e (<i>I</i> V _e (<i>I</i> V _e (<i>I</i> V _w V _d (Pin V _w V _d	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS) 1 - 6 to Pin 7 - 10) HV transient test according to M3064 (1,2) Testing voltage to M3014	purs room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS) us / 50 μs-wave form) (5 s)	10 30g cant characteristi 625±0,7% ± 0.725 1.5 1400 1750 8 3	c mV kV V V V
I <mark>spection</mark> (Measu V _{out} (SC) (\ V _{out} -V _{Ref} (I _P =0) (\ V _d (\ V _e (<i>I</i> V _e (<i>I</i> V _e (<i>I</i> V <u>v</u> V <u>v</u> (Pin V _w V _d	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS) 1 - 6 to Pin 7 - 10) HV transient test according to M3064 (1,2) Testing voltage to M3014 Partial discharge voltage acc.M3024 (RMS)	purs room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS) us / 50 μs-wave form) (5 s)	10 30g cant characteristi 625±0,7% ± 0.725 1.5 1400 1750 8 3 1400	c mV kV V V V
nspection (Measu V _{out} (SC) (\ V _{out} –V _{Ref} (Ip=0) (\ V _d (\ V _e (A	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS) 1 - 6 to Pin 7 - 10) HV transient test according to M3064 (1,2) Testing voltage to M3014	purs room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS) us / 50 μs-wave form) (5 s)	10 30g cant characteristi 625±0,7% ± 0.725 1.5 1400 1750 8 3	c mV kV V V V
Aspection (Measu V _{out} (SC) (' V _{out} -V _{Ref} (I _P =0) (' V _d (' V _e (<i>A</i> V _e (<i>A</i> V _e V _d V _d V _d V _e Pplicable docum	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS) 1 - 6 to Pin 7 - 10) HV transient test according to M3064 (1,2 p Testing voltage to M3014 Partial discharge voltage acc.M3024 (RMS with V _{vor} (RMS)	purs room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS) us / 50 μs-wave form) (5 s)	10 30g cant characteristi $625\pm0,7\%$ ± 0.725 1.5 1400 1750 8 3 1400 1750	c mV kV V V V
hspection (Measu Vout (SC) (N Vout – VRef (IP=0) (N Vd (N Ve (N Vpe (A Vpe (A Vpe (A Vw Vd Ve (A pplicable docum urrent direction: A princlosures according	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at re V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS) 1 - 6 to Pin 7 - 10) HV transient test according to M3064 (1,2 p Testing voltage to M3014 Partial discharge voltage acc.M3024 (RMS with V _{vor} (RMS) ents	purs room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS) us / 50 μs-wave form) (5 s)	10 30g cant characteristi $625\pm0,7\%$ ± 0.725 1.5 1400 1750 8 3 1400 1750	c mV kV V V V
Aspection (Measu Vout (SC) (N Vout—VRef (IP=0) (N Vd (N Ve (A Ye (A	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS) 1 - 6 to Pin 7 - 10) HV transient test according to M3064 (1,2 p Testing voltage to M3014 Partial discharge voltage acc.M3024 (RMS with V _{vor} (RMS) ents positive output current appears at point V _{out} , by primary to IEC529: IP50.	purs room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS) us / 50 μs-wave form) (5 s)	10 30g cant characteristi $625\pm0,7\%$ ± 0.725 1.5 1400 1750 8 3 1400 1750	c mV kV V V V
Vout (SC) (N Vout-V _{Ref} (Ip=0) (N Vd (N Ve (A Ve (A) Ve (A)	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at a V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS) 1 - 6 to Pin 7 - 10) HV transient test according to M3064 (1,2 p Testing voltage to M3014 Partial discharge voltage acc.M3024 (RMS with V _{vor} (RMS) ents positive output current appears at point V _{out} , by primar to IEC529: IP50. 508, file E317483, category NMTR2 / NMTR8	purs room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS) us / 50 μs-wave form) (5 s))	10 30g cant characteristi 625±0,7% ± 0.725 1.5 1400 1750 8 3 1400 1750	c mV kV V V
aspection (Measu Vout (SC) (N Vout—VRef (IP=0) (N Vd (N Ve (N vpe Testing (Pin Vw V Vd Ve pplicable docum urrent direction: A preclosures according urther standards UL atum Name	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hc rement after temperature balance of the samples at 1 V) M3011/6: Output voltage vs. external ref V) M3226: Offset voltage V) M3014: Test voltage, rms, 1 s pin 1 – 6 vs. pin 7 – 10 AQL 1/S4) Partial discharge voltage acc.N with V _{vor} (RMS) 1 - 6 to Pin 7 - 10) HV transient test according to M3064 (1,2 p Testing voltage to M3014 Partial discharge voltage acc.M3024 (RMS with V _{vor} (RMS) ents positive output current appears at point V _{out} , by primar to IEC529: IP50. 508, file E317483, category NMTR2 / NMTR8	purs room temperature), SC = signifi erence (I _P =3x10As, 40-80Hz) M3024 (RMS) Us / 50 μs-wave form) (5 s)) y current in direction of the arrow 0Hz → Ip=3x10As, 40-80Hz and	10 30g cant characteristi 625±0,7% ± 0.725 1.5 1400 1750 8 3 1400 1750	c mV kV V V

tr: Res at IF Δt (I _{Pmax}): Dela mea UPD Ratec UPD Ratec UPD Vvor Define Vvor Define Vvor Syste Vvor Vsys Syste Vwork Worki Vo: Offs Vo= VoH: Zero VoH: Zero Xi: Pern X xges(IPN): Pern			0404-N4646-X664
Explanation of tr: Res at IF Δt (IPmax): Dela mea UPD Ratec UPD Ratec UPD Vvor Define test in Vvor Vsys Syste Vwork Worki Vor: Offs Vor: Offs Vor: Zerc Vor: Lon X: Pern X ges(IPN): Pern	50 A Current Sensor for 5V- Supp For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic Isolation between the primary circuit (high power) and the secondary circuit	ly Voltage	Date: 11.08.2014
tr: Res at IF Δt (I _{Pmax}): Dela mea UPD Ratec UPD Ratec UPD Vvor Define Vvor Define Vvor Syste Vvor Vsys Syste Vwork Worki Vo: Offs Vo= VoH: Zero VoH: Zero Xi: Pern X xges(IPN): Pern	Custome	ers Part No.:	Page 2 of 2
at I _F ∆t (I _{Pmax}): Dela mea UPD Ratec UPD Ratec UPD Vvor Define test in Vvor Vsys Syste Vwork Worki V₀: Offs V₀ = V₀H: Zerc V₀H: Zerc X Xges(I _{PN}): Pern X _{ges}	n of several of the terms used in the tablets (in alph	abetical order)	
mea UPD Ratec UPD Ratec UPD Vvor Defind test in Vvor Vsys Syste Vwork Worki Vo: Offs Vo= VoH: Zerd VoH: Zerd VoH: Lon X: Pern X ges(IPN): Pern	Response time (describe the dynamic performance for at $I_P = 0.9$ $^{\circ}$ I_{PN} between a rectangular current and the		nge), measured as delay time
UPD Vvor Define test in Vvor Vsys Syste Vwork Worki Vo: Offs Vo= Voh: Zero Voh: Lon X: Pern X ges(IPN): Pern X _{ges}	Delay time (describe the dynamic performance for the measured between I_{Pmax} and the output voltage $V_{\text{out}}(I_{\text{P}}$		-
test ir V _{vor} V _{sys} Syste V _{work} Worki V ₀ : Offs V ₀ : Zero V ₀ : Lon X: Pern X X _{ges} (I _{PN}): Pern X _{ges}	Rated discharge voltage (recurring peak voltage separated J_{PD} = $\sqrt{2} * V_e / 1,5$	ted by the insulation) proved wi	th a sinusoidal voltage $V_{\rm e}$
V _{sys} Syste V _{work} Worki V ₀ : Offs V ₀ : Zero V ₀₁ : Lon X: Pern X X _{ges} (I _{PN}): Pern X _{ges}	Defined voltage is the RMS valve of a sinusoidal voltage est in IEC 61800-5-1	e with peak value of 1,875 * U _{PC}	o required for partial discharg
V _{work} Worki V ₀ : Offs V ₀ : Zerc V ₀ I: Lon X: Pern X X _{ges} (I _{PN}): Pern X _{ges}	$v_{\rm vor} = 1,875 {}^*{\rm U}_{\rm PD} / \sqrt{2}$		
V ₀ : Offs V ₀ : Zero V ₀₁ : Lon X: Pern X X _{ges} (I _{PN}): Pern X _{ges}	system voltage RMS value of rated voltage according	ng to IEC 61800-5-1	
Vo= VoH: Zerr Vot: Lon X: Perr X Xges(IPN): Perr X _{ges}	Vorking voltage voltage according to IEC 61800-5-1	which occurs by design in a cir	cuit or across insulation
V _{0t} : Lon X: Perr X X _{ges} (I _{PN}): Perr X _{ges}	Offset voltage between V _{out} and the rated reference voltage V _o = V _{out} (0) - 2,5V	bltage of $V_{ref} = 2,5V.$	
X: Peri X X _{ges} (I _{PN}): Peri X _{ge}	Zero variation of $V_{\mbox{\scriptsize o}}$ after overloading with a DC of tenform	old the rated value	
X X _{ges} (I _{PN}): Peri X _{ge}	Long term drift of V_o after 100 temperature cycles in th	ne range -40 bis 85 °C.	
X _{ges} (I _{PN}): Peri X _{ge}	Permissible measurement error in the final inspection at $X = 100 \cdot \left \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625 V} - 1 \right \%$	at RT, defined by	
X _{ge}	$X = 100 \cdot \left \frac{-0.01 - 11}{0,625 \text{V}} - 1 \right \%$		
ε _L : Line	$ \begin{array}{l} \text{Permissible measurement error including any drifts over } \\ X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.625V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.65V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.65V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.65V} - 1 \right \text{\% or} X_{\text{ges}} = 100 \cdot \left \frac{V_{\text{out}} \left(I_{\text{PN}} \right) - 2.5V}{0.65V} - 1 \right X_{\text{ges}} = 100 \cdot 1$		
	Linearity fault defined by $\mathcal{E}_{\rm L} = 100 \cdot \left \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{out}}{V_{out}} \right $	$\frac{(I_P) - V_{out}(0)}{(I_{PN}) - V_{out}(0)} \bigg \%$	
This "Additional	onal information" is no declaration of warranty according	g BGB §443.	
Hrsg.: KB-E			

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Board Mount Current Sensors category:

Click to view products by Vacuumschmelze manufacturer:

Other Similar products are found below :

CSDD1FR CSLA2ELI CSNP661-007 SCL15 10006 L18P003S05 T60404-B4658-X030 LA02P021S03 LA01M041S05 LA03P054S05 CSNE151-003 L08P150D15IPV L18P050D15-OP CT220FMC-IS5 CT220PMC-IS5 CT220BMC-HS5 SIC830AED-T1-GE3 CT-05 CT-07-100 CT-07-50 MR-1 MR-1-P5 T60404-N4646-X662 T60404-N4646-X664 DRV421RTJT CSNR161005 T60404-N4646-X651 MR-3 MR-2 MR-4 CT-06-100 CT-06-50 T60404-N4646-X412 CT-06-75 CSDA1BA-S CSDC1DA CSDD1EC CSLA1CF CSLA1DE CSLA1DG CSLA1DK CSLA1EL CSLA1GE CSLA1GF CSLA2CDI CSLA2CF CSLA2CFI CSLA2DE CSLA2DG CSLA2DH CSLA2DJ