VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X764

K-no.: 26078 50 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Date: 02.02.2017

Standard type Customers Part no.: Page 1 of 4

Customer: Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- · Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- · Very low hysteresis of offset current
- · Short response time
- · Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal r.m.s. current	50	Α
V_{out}	Output voltage @ I _P	$V_{Ref} \pm (0.625*I_P/I_{PN})$	V
V_{out}	Output voltage @ I _P =0, T _A =25°C	$V_{Ref} \pm 0.000725$	V
V_{Ref}	External Reference voltage range	04	V
	Internal Reference voltage	2.5 ±0.005	V
K _N	Turns ratio	14 : 1400	

Accuracy - Dynamic performance data

		mın.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±150			
Χ	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
ϵ_{L}	Linearity			0.1	%
V_{out} - V_{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±0.725	mV
$\Delta V_o / V_{Ref} / \Delta T$	Temperature drift of V_{out} @ I_P =0, V_{Ref} =2,5V, T_A = -40)85°C	0.7	10	ppm/°C
t_r	Response time @ 90% von I _{PN}		300		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		200		ns
f	Frequency bandwidth	DC200			kHz

General data

		mm.	ιyp.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
T_S	Ambient storage temperature (acc to M3101)	-40		+105	°C
m	Mass		12		g
V_{C}	Supply voltage	4.75	5	5.25	V
Ic	Current consumption		15		mA

Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1-4 to Pin 5-12) Reinforced insulation, Insulation material group 1, Pollution degree 2

S _{clear}	Clearance (component without solder pad)	9.6		mm
Screep	Creepage (component without solder pad)	10.6		mm
V_{sys}	System voltage overvoltage category 3	RMS	600	V
V_{work}	Working voltage	RMS	1060	V
U_PD	Rated discharge voltage	peak value	1320	V

Note: "According UL 508: Max. potential difference = 600 V_A

Date	Name	Issue	Amendment						
02.02.17	DJ	83	Page A1, M-s	ge A1, M-sheet M3101 added (storage temperature). Minor change.					
16.11.16	DJ	83	Typo: Turns r	ypo: Turns ratio K _N changed from 14 : 2000 to 14 : 1400. Minor change					
Hrsg.: MC	C-PD		arb: DJ		MC-PM: Ga.			freig.: BEF released	

K-no.: 26078 50 For DC, isol (hig (ele Customer: Standard ty) Mechanical outline (mm):

SPECIFICATION

Item no.: T60404-N4646-X764

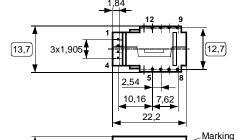
Date: 02.02.2017

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

50 A Current Sensor for 5V- Supply Voltage

(electronic circuit)

stomer: Standard type Customers Part no.:


Page 2 of 4

Connections:

1...4: 0,46*0,46 mm 5..12: ∅ 1 mm

Marking:

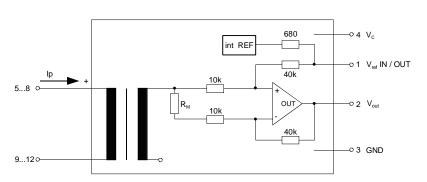
VAT UL-sign 4646-X764-83 F DC

c**PU**us

test dimension

Tolerances grid distance ±0,25mm

DC= Date Code F = Factory


General tolerances DIN ISO 2768-c

Schematic diagram

3,5±0,5

24

0,5 +0,1 -0

Possibilities of wiring (@ T_A = 85°C)

primary windings	primar RMS	y current maximal	output voltage RMS	turns ratio	primary resistance	wiring
N_P	I _P [A]	Î _{P,max} [A]	$V_{out}(I_P)[V]$	K_N	R_P [m Ω]	
1	50	±150	2.5±0.625	1:1400	0.25	9 12 8 5
2	12	±75	2.5±0.300	2:1400	1.0	9 12
4	8	±37,5	2.5±0.300	4:1400	4	9 12

Hrsg.: MC-PD	Bearb: DJ	MC-PM: Ga.		freig.: BEF
editor	designer	check		released

VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X764

Date:

02.02.2017

K-no.: 26078 50 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

(electronic circuit)

Customer: Standard type Customers Part no.: Page 3 of 4

Electrical Data

<u> </u>					
		min.	typ.	max.	Unit
V_{Ctot}	Maximum supply voltage (without function)			7	V
Ic	Supply Current with primary current	15m/	$+I_p*K_N+V_o$	_{ut} /R _L	mA
I _{out,SC}	Short circuit output current		±20		mA
R_P	Resistance / primary winding @ T _A =25°C		1		mΩ
Rs	Secondary coil resistance @ T _A =85°C			67	Ω
$R_{i,Ref}$	Internal resistance of Reference input		670		Ω
R_{i} ,(V_{out})	Output resistance of Vout			1	Ω
R_L	External recommended resistance of Vout	1			$k\Omega$
C_L	External recommended capacitance of Vout			500	pF
$\Delta X_{Ti}/\Delta T$	Temperature drift of X @ T _A = -40 +85 °C			40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		2	6	mV
V_{0t}	Longtermdrift of V ₀		1		mV
V _{0T}	Temperature drift von $V_0 @ T_A = -40 +85$ °C		1		mV
V_{0H}	Hysteresis of V_{out} @ $I_P=0$ (after an overload of 10 x I_{PN})			1	mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio			1	mV/V
V _{oss}	Offsetripple (with 1 MHz- filter first order)			35	mV
V _{oss}	Offsetripple (with 100 kHz- filter firdt order)		2	5	mV
V _{oss}	Offsetripple (with 20 kHz- filter first order)		0.6	1	mV
Ck	Maximum possible coupling capacity (primary – second	ondary)	5	10	pF
	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hours			30g	

Inspection (Measurement after temperature balance of the samples at room temperature; SC = significant characteristic)

V _{out} (SC)	(V)	M3011/6:	Output voltage vs. external reference (I _P =40As, 40-80Hz)	625±0,7%	mV
Vout-VRef (IP=0) (V)	M3226:	Offset voltage	± 0.725	mV
V_d	(V)	M3014:	Test voltage, rms, 1 s pin 1 – 4 vs. pin 5 – 12	1.8	kV
V _e	(AQ	L 1/S4)	Partial discharge voltage acc.M3024 (RMS)	1400	V
			with V _{vor} (RMS)	1750	V

Type Testing (Pin 1 - 4 to Pin 5 - 12)

V_{W}	HV transient test according to M3064 (1,2 μs / 50 μs-wa	8	kV	
V_d	Testing voltage to M3014	(5 s)	3.6	kV
V_{e}	Partial discharge voltage acc.M3024 (RMS)		1400	V
	with V _{vor} (RMS)		1750	V

Applicable documents

Operating temperature of the current sensor and the primary conductor must not exceed 105° C. Current direction: A positive output current appears at point I_s, by primary current in direction of the arrow. Housing and bobbin material UL-listed: Flammability class 94V-0.

Enclosures according to IEC529: IP50.

Further standards UL 508 file E317483, category NMTR2 / N

Hrsg.: MC-PD	Bearb: DJ	MC-PM: Ga.		freig.: BEF
editor	designer	check		released

SPECIFICATION

T60404-N4646-X764 Item no.:

K-no.: 26078

Customer:

50 A Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit

Date: 02.02.2017

(high power) and secondary circuit (electronic circuit)

Page 4 of 4

Explanation of several of the terms used in the tablets (in alphabetical order)

t_r: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_p)

Customers Part no .:

Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) $\Delta t (I_{Pmax})$: measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of dip/dt ≥ 100 A/µs.

V₀: Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2,5V$. $V_0 = V_{out}(0) - 2.5V$

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage Ve $= \sqrt{2} * V_e / 1.5$ U_{PD}

 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * UPD required for partial discharge test in IEC 61800-5-1

 $= 1.875 *U_{PD} / \sqrt{2}$ V_{vor}

Standard type

 V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation V_{work}

V_{0H}: Zero variation of Vo after overloading with a DC of tenfold the rated value

 V_{0t} : Long term drift of V_o after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

 $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625 V} - 1 \right| \%$

 $X_{ges}(I_{PN})$: Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

 $\mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - 2,5V}{0,625 \text{V}} - 1 \right| \quad \% \quad \text{or} \quad \mathbf{X}_{\text{ges}} = 100 \cdot \left| \frac{\mathbf{V}_{\text{out}} \left(\mathbf{I}_{\text{PN}} \right) - V_{\textit{ref}}}{0,625 \text{V}} - 1 \right| \quad \%$

 $\varepsilon_{L} = 100 \cdot \left| \frac{I_{P}}{I_{DN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{DN}) - V_{out}(0)} \right| \%$ Linearity fault defined by εL:

VACUUMSCHMELZE	SPECIF	CATION		Item no.:	T60404-N	4646-X764
K-no.: 26078	For electronic conditions and pulsed isolation between	t Sensor for 5V urrent measurement mixed, with a ga en primary circuit d secondary circuit it)	- Supply Voltag	ie	Date:	02.02.2017
Customer: Stand	lard type		Customers Part	no.:	Page 5	5 of 4
Hrsg.: MC-PD editor	Bearb: DJ designer		MC-PM: Ga.			freig.: BEF released

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Industrial Current Sensors category:

Click to view products by Vacuumschmelze manufacturer:

Other Similar products are found below:

CSNS181 CSNS300M-001 5SHT-151-E 7SHT-301-E SAO-Q1N SAO-Q2N CSCA0075A000U12J01 SAO-S1N hxn25-p L34S1T5D15T ISB-670-A-802 BB-JC24S250-V CSNS300M-500 LA200-P ACS724LLCTR-10AB-T DCSA50 ECS40BC A-CS010B A-CS050B A-CS100B A-CS200B ACS712ELCTR-20A-T BB-JC10F50-V CS010GT12 CS030EK1 CS050B CS050BT12 CS200B CS200BKT5 CS200BT24 CS300B CS400B CS600B CSM010PST5 CSM010SYA CSM015NPT5 CSM015SY CSM025AY CSM050LA/50mA CSM100AP/1:2000 CSM100LA/50mA CSNS300F-001 CC6903SO-30A CC6903SO-20A CC6904SO-20A 20310200101 20310200101 20310300101 20310500101 20312000101