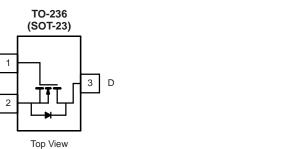
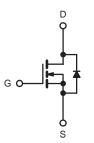


N-Channel 30-V (D-S) MOSFET

PRODUC	CT SUMMARY		
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)
30	0.030 at V _{GS} = 10 V	6.5	4.5 nC
30	0.033 at $V_{GS} = 4.5 \text{ V}$	6.0	4.5110

FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFET
- 100 % R_g Tested
- Compliant to RoHS Directive 2002/95/EC



HALOGEN FREE

APPLICATIONS

DC/DC Converter

N-Channel MOSFET

ABSOLUTE MAXIMUM RATING	GS $T_A = 25 ^{\circ}C$,	unless othe	erwise noted		
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage	V_{DS}	30	V		
Gate-Source Voltage		V_{GS}	± 20	v	
	T _C = 25 °C		6.5 ^a		
Continuous Drain Current (T _J = 150 °C)	T _C = 70 °C	I _D	6.0		
Continuous Brain Current (1) = 100 O)	T _A = 25 °C	5 °C 5.3	5.3		
	T _A = 70 °C	5.0	Α		
Pulsed Drain Current		I _{DM}	25		
	T _C = 25 °C		1.4		

	1A - 70 0		3.0	
Pulsed Drain Current		I _{DM}	25	
	T _C = 25 °C		1.4	
Continuous Source-Drain Diode Current	T _A = 25 °C	Is	0.9 ^{b, c}	
	T _C = 25 °C		1.7	
Maximum Power Dissipation	T _C = 70 °C	P _D	1.1	w
Maximum rower bissipation	T _A = 25 °C	۱ ۵ ا	1.1 ^{b, c}	VV
	T _A = 70 °C		0.7 ^{b, c}	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C
Soldering Recommendations (Peak Temperature) ^{d, e}			260	C

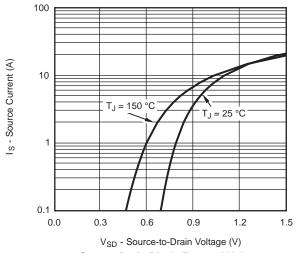
THERMAL RESISTANCE RAT	NGS				
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{b, d}	t ≤ 5 s	R_{thJA}	90	115	°C/W
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	60	75	0/11

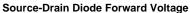
a. Package limited

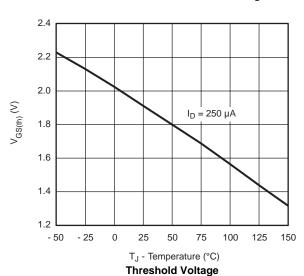
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 5 s.
- d. Maximum under steady state conditions is 130 °C/W.

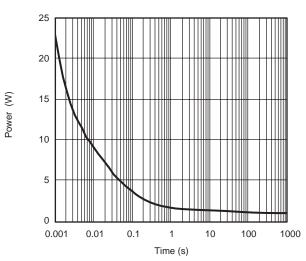
SPECIFICATIONS $T_J = 25 ^{\circ}C$,				1	ı		
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V, I}_{D} = 250 \mu\text{A}$	30			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA		31		m\//º(
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_{J}$			- 5		11107	
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	0.7	1.1	2.0	V	
Gate-Source Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	l	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1	^	
Zero Gate voltage Drain Current	DSS	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			10	μΑ	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	10			Α	
D : 0	D	$V_{GS} = 10 \text{ V, I}_{D} = 3.2 \text{ A}$		0.030			
Drain-Source On-State Resistance ^a	NDS(on)	$V_{GS} = 4.5 \text{ V}, I_D = 2.8 \text{ A}$		0.033		12	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = 15 \text{ V}, I_D = 4.8 \text{ A}$		11		S	
Dynamic ^b				1			
Input Capacitance	C _{iss}			335			
Output Capacitance		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		45		V mV/°C V nA μA A	pF
Reverse Transfer Capacitance		rss		17		1	
Total Oats Observe		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 3.4 \text{ A}$		4.5	6.7		
Total Gate Charge	e Charge Q _g V _{DS} = 10 V, V _{GS} = 10 V, I _D = 3.4 X			2.1	3.2	1	
Gate-Source Charge	Q_{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 3.4 \text{ A}$		0.85		nC	
Gate-Drain Charge	Q_{gd}			0.65			
Gate Resistance	R _g	f = 1 MHz	0.8	4.4	8.8	Ω	
Turn-On Delay Time	t _{d(on)}			12	20		
Rise Time	t _r	V_{DD} = 15 V, R_L = 5.6 Ω		50	75		
Turn-Off Delay Time	$R_{DS(on)} = \frac{V_{GS} = 10 \text{ V, } I_{D} = 3.2 \text{ A}}{V_{GS} = 4.5 \text{ V, } I_{D} = 2.8 \text{ A}}$ $Q_{fS} = \frac{V_{DS} = 15 \text{ V, } I_{D} = 4.8 \text{ A}}{V_{DS} = 15 \text{ V, } I_{D} = 4.8 \text{ A}}$ $C_{iss} = \frac{V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}}{V_{DS} = 15 \text{ V, } I_{D} = 3.4 \text{ A}}$ $Q_{g} = \frac{V_{DS} = 15 \text{ V, } V_{GS} = 10 \text{ V, } I_{D} = 3.4 \text{ A}}{V_{DS} = 15 \text{ V, } V_{GS} = 4.5 \text{ V, } I_{D} = 3.4 \text{ A}}$ $Q_{gd} = \frac{V_{DS} = 15 \text{ V, } V_{GS} = 4.5 \text{ V, } I_{D} = 3.4 \text{ A}}{I_{D} = 15 \text{ V, } I_{D} = 3.4 \text{ A}}$ $Q_{gd} = \frac{V_{DS} = 15 \text{ V, } V_{GS} = 4.5 \text{ V, } I_{D} = 3.4 \text{ A}}{I_{D} = 2.7 \text{ A, } V_{GEN} = 4.5 \text{ V, } R_{g} = 1 \Omega}$ $Q_{gd} = \frac{V_{DD} = 15 \text{ V, } R_{L} = 5.6 \Omega}{I_{D} = 2.7 \text{ A, } V_{GEN} = 4.5 \text{ V, } R_{g} = 1 \Omega}$ $Q_{gd} = \frac{V_{DD} = 15 \text{ V, } R_{L} = 5.6 \Omega}{I_{D} = 2.7 \text{ A, } V_{GEN} = 10 \text{ V, } R_{g} = 1 \Omega}$ $Q_{gd} = \frac{V_{DD} = 15 \text{ V, } R_{L} = 5.6 \Omega}{I_{D} = 2.7 \text{ A, } V_{GEN} = 10 \text{ V, } R_{g} = 1 \Omega}$	12	20	1			
Fall Time	t _f			22	35		
Turn-On Delay Time	t _{d(on)}			5	10	ns	
Rise Time	t _r	V_{DD} = 15 V, R_L = 5.6 Ω		12	20	1	
Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ 2.7 A, V_{GEN} = 10 V, R_g = 1 Ω		10	15		
Fall Time				5	10	1	
Drain-Source Body Diode Characteristi	cs			L			
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			1.4	۸	
Pulse Diode Forward Current	I _{SM}				15	^	
Body Diode Voltage	V_{SD}	$I_S = 2.7 \text{ A}, V_{GS} = 0 \text{ V}$		0.8	1.2	V	
Body Diode Reverse Recovery Time	t _{rr}			10	20	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	1 07 A 41/4 400 A/2 T 05 00		5	10	nC	
Reverse Recovery Fall Time	t _a	$I_F = 2.7 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$		6			
Reverse Recovery Rise Time	t _b			4		ns	

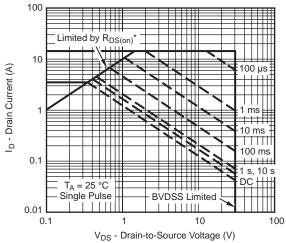
Notes:


- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%$
- b. Guaranteed by design, not subject to production testing.

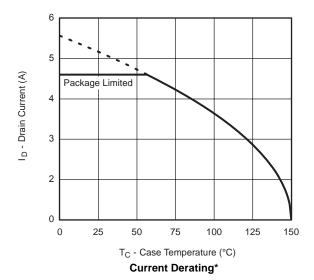

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

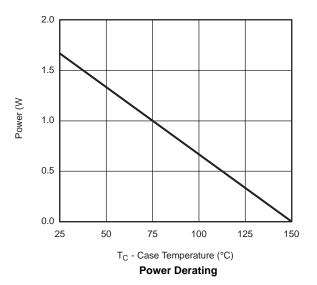






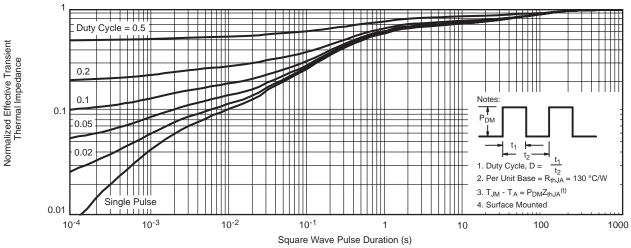
On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power

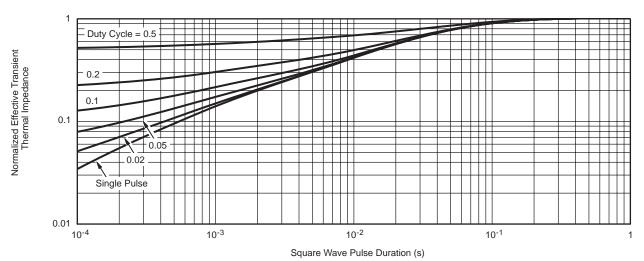


 * V_{GS} > minimum V_{GS} at which R_{DS(on)} is specified

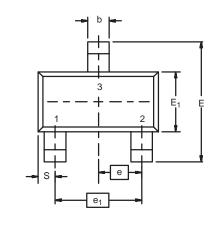
Safe Operating Area, Junction-to-Ambient

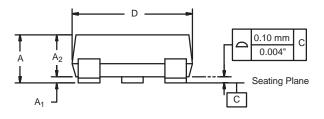


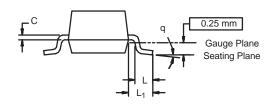
服务热线:400-655-8788


5

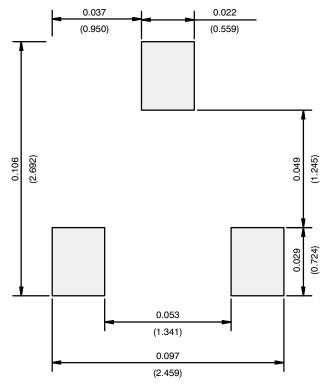
^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.


Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Foot

SOT-23 (TO-236): 3-LEAD



Dim	MILLIM	IETERS	INCHES		
	Min	Max	Min	Max	
Α	0.89	1.12	0.035	0.044	
A ₁	0.01	0.10	0.0004	0.004	
A ₂	0.88	1.02	0.0346	0.040	
b	0.35	0.50	0.014	0.020	
С	0.085	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E ₁	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.0374 Ref		
e ₁	1.90	BSC	0.074	8 Ref	
L	0.40	0.60	0.016	0.024	
L ₁	0.64	Ref	0.025 Ref		
S	0.50	Ref	0.020 Ref		
q	3°	8°	3°	8°	

DWG: 5479

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by VBsemi Elec manufacturer:

Other Similar products are found below:

IRFD120 JANTX2N5237 BUK455-60A/B MIC4420CM-TR VN1206L NDP4060 SI4482DY IPS70R2K0CEAKMA1 SQD23N06-31L-GE3
TK16J60W,S1VQ(O 2SK2614(TE16L1,Q) DMN1017UCP3-7 DMN1053UCP4-7 SQJ469EP-T1-GE3 NTE2384 DMC2700UDMQ-7
DMN2080UCB4-7 DMN61D9UWQ-13 US6M2GTR DMN31D5UDJ-7 DMP22D4UFO-7B DMN1006UCA6-7 DMN16M9UCA6-7
STF5N65M6 IRF40H233XTMA1 STU5N65M6 DMN6022SSD-13 DMN13M9UCA6-7 DMTH10H4M6SPS-13 DMN2990UFB-7B
IPB80P04P405ATMA2 2N7002W-G MCAC30N06Y-TP MCQ7328-TP BXP7N65D BXP4N65F AOL1454G WMJ80N60C4 BXP2N20L
BXP2N65D BXT1150N10J BXT1700P06M TSM60NB380CP ROG RQ7L055BGTCR DMNH15H110SK3-13 SLF10N65ABV2
BSO203SP BSO211P IPA60R230P6 IPA60R460CE