

RoHS

COMPLIANT

HALOGEN

FREE

P-Channel 20-V (D-S) MOSFET

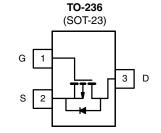
MOSFET PRODUCT SUMMARY						
V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A) ^a	Q _g (Typ.)			
	0.035 at V _{GS} = - 10 V	- 5 ^e				
- 20	0.043 at V _{GS} = - 4.5 V	- 5 ^e	10 nC			
	0.061 at V _{GS} = - 2.5 V	- 4.8				

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET[®] Power MOSFET
- 100 % R_g Tested ٠
- Compliant to RoHS Directive 2002/95/EC ٠

APPLICATIONS

- · Load Switch
- PA Switch
- DC/DC Converters •


ABSOLUTE MAXIMUM RATINGS ($T_A =$	25 °C, unless ot	herwise noted)		
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	- 20	V	
Gate-Source Voltage	V _{GS}	± 12	v	
	T _C = 25 °C		- 5 ^e	
Continuous Drain Current (T ₁ = 150 °C)	T _C = 70 °C	I _D	- 4.8	
	T _A = 25 °C	טי	- 4.5 ^{b, c}	
	T _A = 70 °C		- 3.5 ^{b, c}	А
Pulsed Drain Current	I _{DM}	- 18	7	
Continuous Source-Drain Diode Current $T_{C} = 25 \text{ °C}$		۱ _S	- 2.1	
Continuous Source-Drain Diode Current	T _A = 25 °C	'S	- 1.0 ^{b, c}	
	T _C = 25 °C		2.5	
Maximum Power Dissipation	T _C = 70 °C	PD	1.6	w
Maximum Fower Dissipation	T _A = 25 °C	۰D	1.25 ^{b, c}	~~~~
	T _A = 70 °C		0.8 ^{b, c}	7
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{b, d}	≤5 s	R _{thJA}	75	100	°C/W
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	40	50	0/11

Notes:

- a. Based on T_C = 25 °C. b. Surface mounted on 1" x 1" FR4 board.
- c. t = 5 s.
- d. Maximum under steady state conditions is 166 °C/W.

e. Package limited.

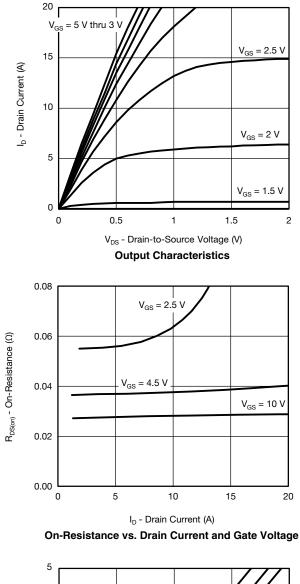
PMV48XP

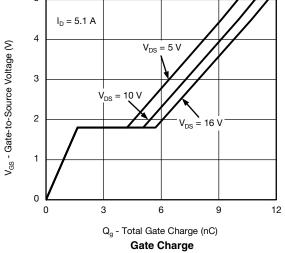
$\begin{array}{ c c c c c } \hline Parameter & Symbol & Test Conditions & Min. Typ. Max. Unit \\ \hline Static \\ \hline Drain-Source Breakdown Voltage & V_{DS} & V_{DS} = 0 V, I_{D} = \cdot 250 \mu A & -20 & & V \\ \hline V_{DS} Temperature Coefficient & AV_{DS}(T_J & I_{D} = \cdot 250 \mu A & -20 & & -13.4 & V \\ \hline V_{DS} Temperature Coefficient & AV_{OS}(m) & V_{DS} = V_{DS}, I_{D} = \cdot 250 \mu A & -0.5 & & -1.5 & V \\ \hline Cate-Source Leakage & V_{DS} & V_{DS} = 0 V, V_{OS} = 12 V & & -10 & \mu A \\ \hline Cate-Source Leakage & V_{DS} & V_{DS} = 0 V, V_{OS} = 0 V, V_{OS} = 0 V & -1 & +10 & 0 & \Lambda \\ \hline V_{DS} = -20 V, V_{OS} = 0 V, V_{DS} = 0 V & -18 & & -10 & 0 & \Lambda \\ \hline V_{DS} = -20 V, V_{OS} = 0 V, I_{D} = -51 \Lambda & & 0.003 & & -10 & 0 \\ \hline On-State Drain Current^a & I_{D}(m) & V_{DS} = -5 V, V_{DS} = -4.5 V & -18 & & 0.003 & & 0 \\ \hline On-State Drain Current^a & I_{D}(m) & V_{DS} = -5 V, I_{D} = -5.1 \Lambda & & 0.004 & & 0.004 & & 0 \\ \hline Orward Tansconductance^a & g_{IS} & V_{DS} = -10 V, V_{OS} = 0 V, I_{D} = -5.1 \Lambda & & 0.0061 & & & 0 \\ \hline Supanic^b & & & & & & & & & & & & & & & & & & &$	MOSFET SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	$V_{DS} = 0 V, I_{D} = -250 \mu A$	- 20			V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			L _ 250 uA		- 13.4		m\//ºC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient		5		2.9		1110/ 0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}		- 0.5		- 1.5	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}				± 100	nA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zara Gata Valtaga Drain Current		$V_{DS} = -20 V, V_{GS} = 0 V$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gale voltage Drain Current	USS	V_{DS} = - 20 V, V_{GS} = 0 V, T_{J} = 55 °C			- 10	μΑ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	On-State Drain Current ^a	I _{D(on)}	V_{DS} \leq - 5 V, V_{GS} = - 4.5 V	- 18			А	
$ \begin{array}{ c c c c c c } \hline V_{GS} = - 2.5 \ V, \ I_D = - 3.7 \ A & 0.061 & \\ \hline V_{GS} = - 2.5 \ V, \ I_D = - 5.1 \ A & 15 & \\ \hline S & \\ \hline \\$			V _{GS} = - 10 V, I _D = - 5.1 A		0.035			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 4.5 V, I _D = - 4.5 A		0.043		Ω	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{GS} = - 2.5 V, I _D = - 3.7 A		0.061			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 5 V, I _D = - 5.1 A		15		S	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b	•			•	•		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			835		pF	
$ \begin{array}{c c c c c c c } \hline Reverse Transfer Capacitance & C_{rss} & 155 & 16 \\ \hline Total Gate Charge & Q_g & $V_{DS} = -10 \ V, V_{GS} = -4.5 \ V, I_D = -5.1 \ A & 10 & 165 & 16 \\ \hline Gate-Source Charge & Q_{gd} & $V_{DS} = -10 \ V, V_{GS} = -2.5 \ V, I_D = -5.1 \ A & 1.7 & $$	Output Capacitance	C _{oss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz		180			
$ \begin{array}{ c c c c c } \hline \mbox{Idial Gate Charge} & Q_g & Q_{gs} & V_{DS} = -10 \ V, \ V_{GS} = -2.5 \ V, \ I_D = -5.1 \ A & 1.7 & 0.9 & $	Reverse Transfer Capacitance				155			
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \\ \hline \end{tabular} \hline ta$	Tatal Cata Charge	0	V_{DS} = - 10 V, V_{GS} = - 4.5 V, I_D = - 5.1 A		10		nC	
$ \begin{array}{c c c c c c c } \hline Gate-Source Charge & Q_{gs} & V_{DS} = -10 \ V, \ V_{GS} = -2.5 \ V, \ I_D = -5.1 \ A & 1.7 & 1.7 & 3.4$	Total Gate Charge	Qg	V _{DS} = - 10 V, V _{GS} = - 2.5 V, I _D = - 5.1 A		6.4			
$ \begin{array}{c c c c c c c c } \hline Gate-Drain Charge & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge	Q _{gs}			1.7			
$\begin{tabular}{ c c c c c c c c c c } \hline Turn-On Delay Time & t_d(on) & t_r & V_{DD} = -10 \ V, \ R_L = 2.4 \ \Omega & 20 & 30 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	Gate-Drain Charge				3.4			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	R _g	f = 1 MHz	0.9	4.4	8.8	Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			22	33		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time		V_{DD} = - 10 V, R_L = 2.4 Ω		20	30	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	I_D = - 4.1 A, V_{GEN} = - 4.5 V, R_g = 1 Ω		28	42		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time				9	18		
Pulse Diode Forward Current ^a Ism-20ABody Diode Voltage V_{SD} $I_S = -4.1 \text{ A}$ -0.8 -1.2 VBody Diode Reverse Recovery Time t_{rr} 2335nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -4.1 \text{ A}$, dl/dt = 100 A/µs, $T_J = 25 \text{ °C}$ 1220nCReverse Recovery Fall Time t_a ns ns ns	Drain-Source Body Diode Characteristi	cs						
Pulse Diode Forward Current ^a Ism- 20Body Diode Voltage V_{SD} $I_S = -4.1 \text{ A}$ - 0.8- 1.2VBody Diode Reverse Recovery Time t_{rr} 2335nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -4.1 \text{ A}$, $dI/dt = 100 \text{ A/}\mu \text{s}$, $T_J = 25 \text{ °C}$ 1220nCReverse Recovery Fall Time t_a nsnsns	Continuous Source-Drain Diode Current	۱ _S	T _C = 25 °C			- 2.1		
Body Diode Reverse Recovery Time t_{rr} 2335nsBody Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a	Pulse Diode Forward Current ^a	I _{SM}				- 20	A	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -4.1 \text{ A}, dI/dt = 100 \text{ A}/\mu \text{s}, T_J = 25 \text{ °C}$ 1220nCReverse Recovery Fall Time t_a 15ns	Body Diode Voltage	V _{SD}	I _S = - 4.1 A		- 0.8	- 1.2	V	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -4.1 \text{ A}, dI/dt = 100 \text{ A}/\mu \text{s}, T_J = 25 \text{ °C}$ 1220nCReverse Recovery Fall Time t_a 15ns	Body Diode Reverse Recovery Time	t _{rr}			23	35	ns	
Reverse Recovery Fall Time t_a $I_F = -4.1 \text{ A}$, $dl/dt = 100 \text{ A}/\mu \text{s}$, $I_J = 25 \text{ °C}$ 15	Body Diode Reverse Recovery Charge				12	20	nC	
ns ns	Reverse Recovery Fall Time	1	$I_F = -4.1 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, I_J = 25 \text{ °C}$		15			
					8		– ns	

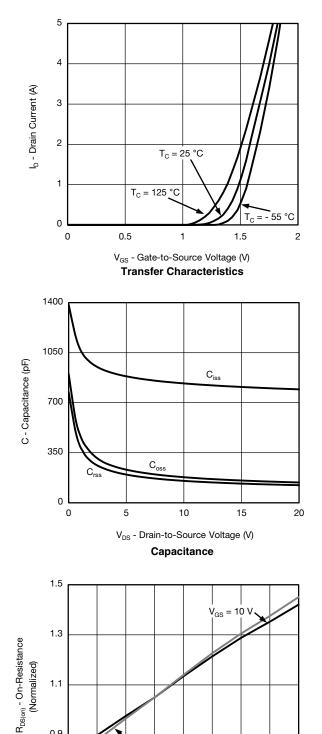
Notes:

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Bsemi


www

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

0.9

0.7

- 50

- 25

 $V_{GS} = 4.5 V$

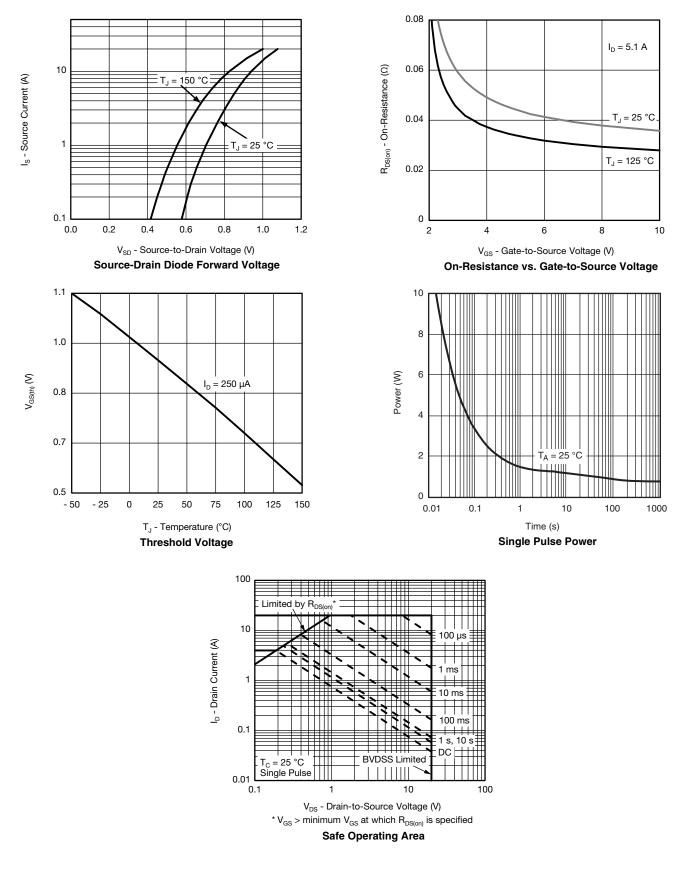
0

25

50

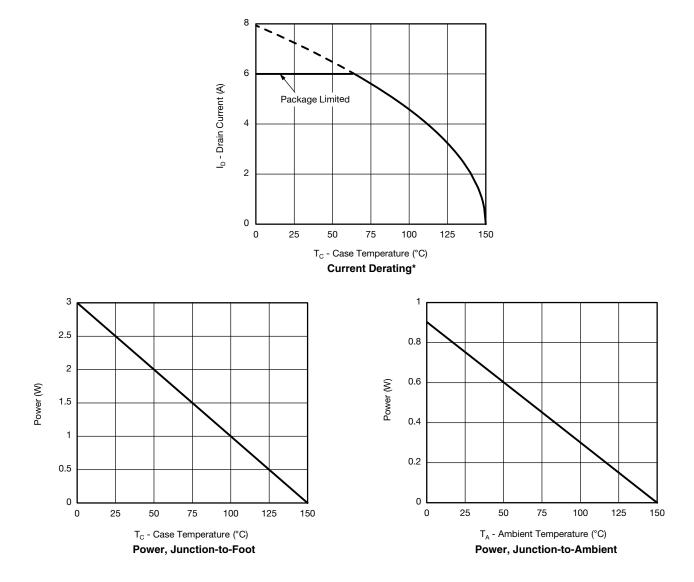
T_J - Junction Temperature (°C)

On-Resistance vs. Junction Temperature

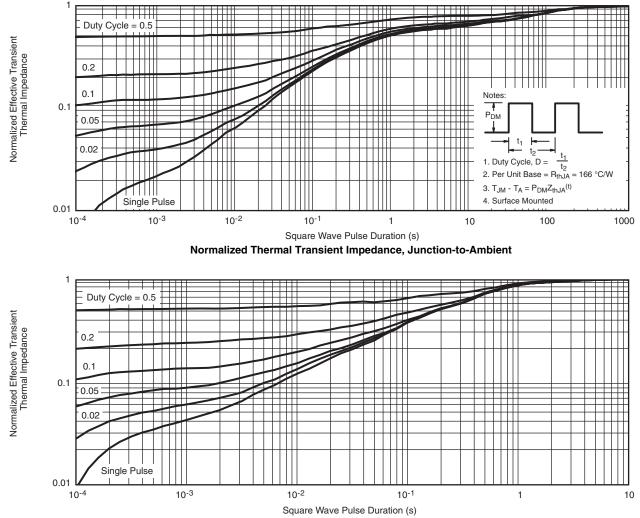

75

100

125 150

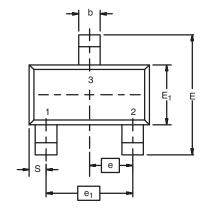


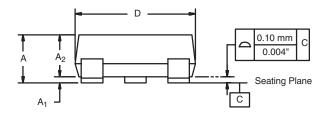
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

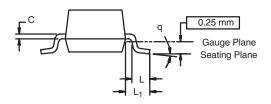

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

* The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

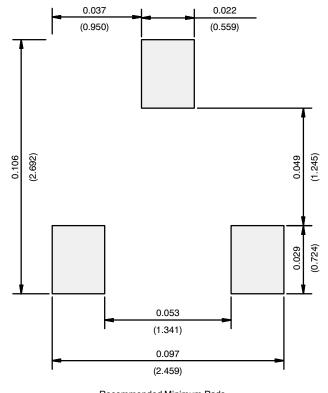
WBsemi www.VBsemi.tw






Normalized Thermal Transient Impedance, Junction-to-Foot

SOT-23 (TO-236): 3-LEAD



Dim	MILLIN	METERS	INCHES		
	Min	Мах	Min	Мах	
Α	0.89	1.12	0.035	0.044	
A ₁	0.01	0.10	0.0004	0.004	
A ₂	0.88	1.02	0.0346	0.040	
b	0.35	0.50	0.014	0.020	
C	0.085	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E ₁	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.0374 Ref		
e ₁	1.90 BSC		0.0748 Ref		
L	0.40	0.60	0.016	0.024	
L ₁	0.64 Ref		0.025	Ref	
S	0.50 Ref		0.020 Ref		
q	3°	8°	3°	8°	
ECN: S-03946-Rev. K, 09- DWG: 5479	Jul-01	•	·		

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.tw)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.tw)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by VBsemi Elec manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3