
Product Data Sheet

FX-700Low Jitter Frequency Translator

Description

The FX-700 is a crystal-based frequency translator used in communications applications where low jitter is paramount.

Performance advantages include superior jitter performance, high output frequencies and small package size. Advanced custom ASIC technology results in a highly robust, reliable and predictable device. The device is packaged in a 16 pad ceramic package with a hermetic seam welded lid.

Features

- 5.0 x 7.5 mm, Hermetically sealed SMD package
- Frequency Translation to 77.760 MHz
- 3.3 Volt or 5.0 Volt Supply
- · Tri-State Output allows board test
- Lock Detect
- · Commercial or Industrial Temp. Range
- CMOS Output
- Absolute Pull Range Performance to +/-100 ppm
- Capable of locking to an 8 kHz pulse/BITS clock

Applications

- Frequency Translation, Clock Smoothing
- Telecom SONET/SDH/ATM
- Datacom DSLAM, DSLAR, Access Nodes
- Base Station GSM, CDMA
- Cable Modem Head End

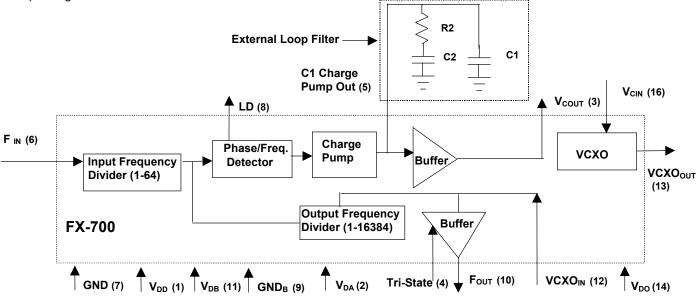


Figure 1. FX-700 Block Diagram

Performance Characteristics

Electrical Performance

Parameter	Symbol	Minimum	Typical	Maximum	Units
Output Frequency⁴ Output (3.3 V) Output (5.0 V)	fo fo	0.100 0.100		77.760 77.760	MHz MHz
Supply Voltage¹ (VDD, VDB, VDA, VDO) +5.0 +3.3	V _{DD} V _{DD}	4.5 2.97	5.0 3.3	5.5 3.63	V
Supply Current ⁵ @19.440 MHz 49.152 MHz 77.760 MHz	loo loo loo		15 25 35	20 30 40	mA mA mA
Output ² Output High Output Low	Voh Vol	0.9*Vdd		0.1*Vdd	V V
Transition Times ² Rise Time Fall Time	tr tr		1.8 1.8	3.0 3.0	ns ns
Duty Cycle³ <60 MHz ≥60 MHz	D	45 40	50 50	55 60	%
Absolute Pull Range	APR	See Part Numbering			ppm
Operating Temperature:		0 to 7	0°C or -40 to	85°C	
Test Conditions for APR (+5V option)	Vc	0.5		4.5	V
Test Conditions for APR (+3.3V option)	Vc	0.3		3.0	V
Input Frequency Pulse Width Low Logic Level High Logic Level	fin Vil Vih	1 kHz 6.0 0.7* Vdd		77.76 MHz 0.3* Vdd	ns V V
Jitter, 8kHz to 77.760 MHz ⁶ rms peak/peak peak/peak			4.7 44 0.003		ps ps UI
Leakage Current of Input	IC	-1		+1	uA
Size 5.0mm x 7.5mm x 2.0mm					

- 1. A 0.01uF high frequency ceramic capacitor in parallel with a 0.1uF low frequency tantalum bypass capacitor is recommended
- 2. Figure 2 defines the waveform parameters. Figure 3 illustrates the standard test conditions under which these parameters are tested and specified
- 3. Duty Cycle is defined as (on time/period) with Vs = Vdd/2 per Figure 2. Duty Cycle is measured with a 15pf load per Figure 3.
- 4. Other frequencies may be available, please contact factory.
- 5. Combined Current From $V_{DD},\,V_{DO},\,V_{DA},\,\text{and}\,\,V_{DB}$
- 6. Typical jitter for 8 kHz to 77.760 MHz translation (no offset bandwidth).

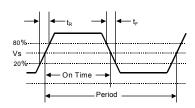


Figure 2. Output Waveform

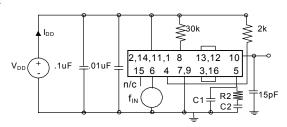
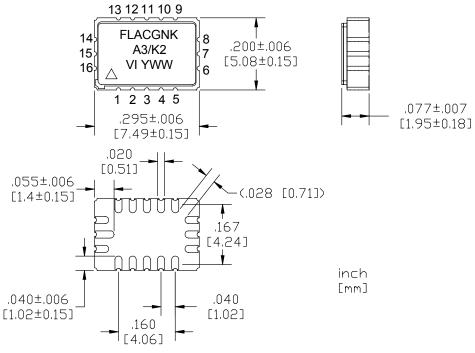
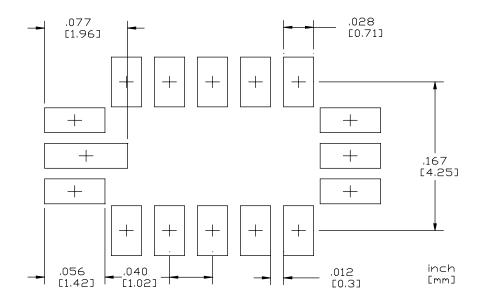
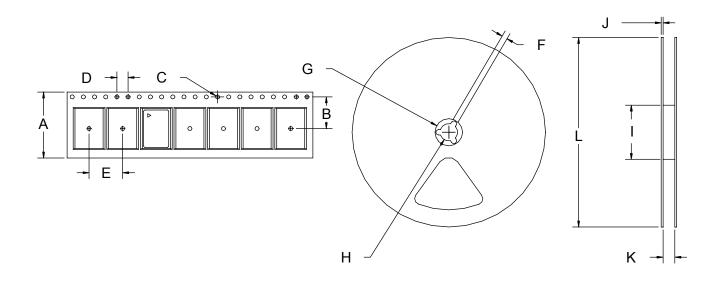



Figure 3. Output Test Conditions (25 $\pm 5^{\circ}$ C)

Outline Diagram




Pin Out		
Pin #	Symbol	Function
1	V_{DD}	Digital PLL Supply (3.3 V +/- 10% or 5.0 V +/- 10%)
2	V_{DA}	Analog PLL Supply (3.3 V +/- 10% or 5.0 V +/- 10%)
3	V _{COUT}	Control Voltage
4	Tri-state ¹	Logic Low = Output Disable / Logic High = Output Enabled
5	C1	Passive Loop Filter Node
6	F _{IN}	Input Frequency
7	GND	Cover and Electrical Ground
8	LD ²	Lock Detect
9	GND _B	Output Buffer Ground
10	Fout	Output Frequency
11	V_{DB}	Output Buffer Supply (3.3V +/-10% or 5.0V +/-10%)
12	VCXO _{IN}	VCXO Input
13	VCXO _{OUT}	VCXO Output
14	V_{DO}	VCXO Supply (3.3 V +/- 10% or 5.0 V +/- 10%)
15	N.C.	No Internal Connection Made
16	VC _{IN}	VCXO Control Voltage Input

¹ Tri-state must be driven to a logic high or a logic low, there is no internal pull up or pull down resistor (tie pin to VDD for PLL operation).

² LD is an open collector output requiring a 30k ohm minimum pull-up resistor to VDD. LD output is logic high under locked condition, logic low for no input at FIN, and for "out-of-lock" condition LD transitions between logic low and high at the phase detector frequency.

Solder Pad Layout

Tape and Reel Dimensions (mm)													
Tape Dimensions Reel Dimensions							# Per Reel						
Product	Α	В	С	D	Е	F	G	Н	ı	J	K	L	
FX-700	16	7.5	1.5	4	8	1.5	20.2	13	50	6	16.4	178	500

Absolute Maximum Ratings

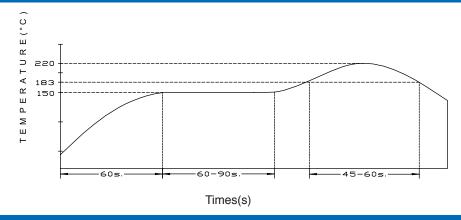
Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Parameter	Symbol	Ratings	Unit
Power Supply	VDD	7	Vdc
Storage Temperature	Tstorage	-55/125	°C

Reliability

Absolute Maximum Ratings

Parameter	Conditions
Mechanical Shock	MIL-STD-883 Method 2002
Mechanical Vibration	MIL-STD-883 Method 2007
Solderability	MIL-STD-883 Method 2003
Gross and Fine Leak	MIL-STD-883 Method 1014
Resistance to Solvents	MIL-STD-883 Method 2016


Handling Precautions

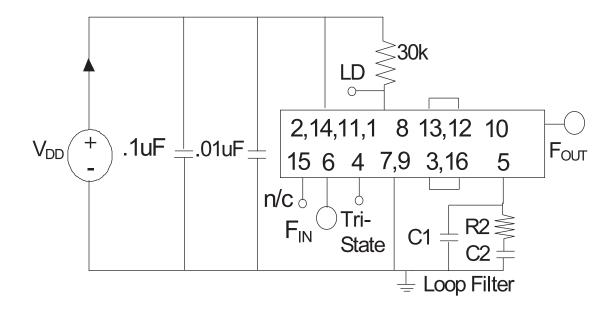
Although ESD protection circuitrry has been designed into the FX-700, proper precautions should be taken when handling and mounting. VI employs a human body model and a charged-device model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance=1.5Kohms and capacitance = 100pF is widely used and Therefore can be used for comparison purposes.

ESD Ratings

Model	Minimum	Conditions
Human Body Model	1500	MIL-STD-883, Method 3015
Charged Device Model	1000	JESD 22-C101

Recommended Solder Reflow Profile

Vectron International • 267 Lowell Road, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • Web: www.vectron.com


FX-700 Theory of Operation

The FX-700 includes an integrated phase detector, current mode charge pump, programmable frequency dividers and VCXO. The FX-700 will translate an input frequency such as 8 kHz, 1.544 MHz or 19.440 MHz to a specific output frequency which is an integer multiple (1-16384) of the input frequency and less than or equal to 77.760 MHz. For clock smoothing applications, the input frequency is typically internally divided down by a factor of 64 (2N where N = 6) by the input frequency divider and this frequency becomes an input to the phase detector. The integrated frequency dividers (factory programmed) and crystal based VCXO allows for a large range of possible frequency translations and clock smoothing applications.

The FX-700's PLL is a feedback system which forces the output frequency to lock in both phase and frequency to the input frequency. While there will be some phase error, theory

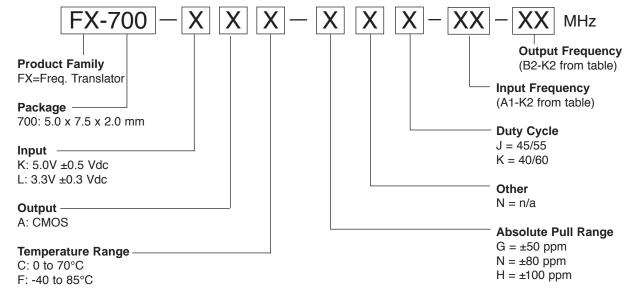
states there is no frequency error. The loop filter design will dictate many key parameters such as jitter reduction, stability, lock range and acquisition time. The external second order passive loop filter is a complex impedance in parallel with the input capacitance of the VCXO. The loop filter converts the charge pump output into the VCXO's control voltage. VI's loop filter design methodology involves the calculation of the open loop gain bandwidth and corresponding phase margin to determine the optimal component values that ensure high loop stability and acceptable lock in time. As a rule of thumb, the VCXO gain is typically 100 ppm/volt and the charge pump current is typically 32 uA.

VI's Applications Engineering staff can provide the external loop filter component values required to meet specific system requirements and application

Suggested FX-700 Circuit Configuration Drawing

Standard Frequencies							
1.000 KHz A1	4.000 KHz A2	8.000 KHz A3	16.000 KHz A4	64.000 KHz A5	1.024 MHz B2		
1.544 MHz B3	2.048 MHz B4	3.088 MHz B6	4.096 MHz B5	6.480 MHz C2	8.192 MHz C3		
10.000 MHz C4	12.352 MHz D1	13.000 MHz D3	15.000 MHz D4	16.384 MHz D5	18.432 MHz D7		
19.440 MHz D6	20.000 MHz E2	20.480 MHz E4	24.576 MHz E6	24.704 MHz E7	26.000 MHz F3		
27.000 MHz F4	30.720 MHz H1	32.000 MHz H2	32.768 MHz H3	34.368 MHz H6	37.056 MHz H4		
38.880 MHz H5	40.960 MHz J1	44.736 MHz J3	49.152 MHz J7	51.840 MHz J4	61.440 MHz J5		
62.208 MHz J8	62.500 MHz J9	65.536 MHz J6	74.152 MHz K1	74.250 MHz K7	77.760 MHz K2		

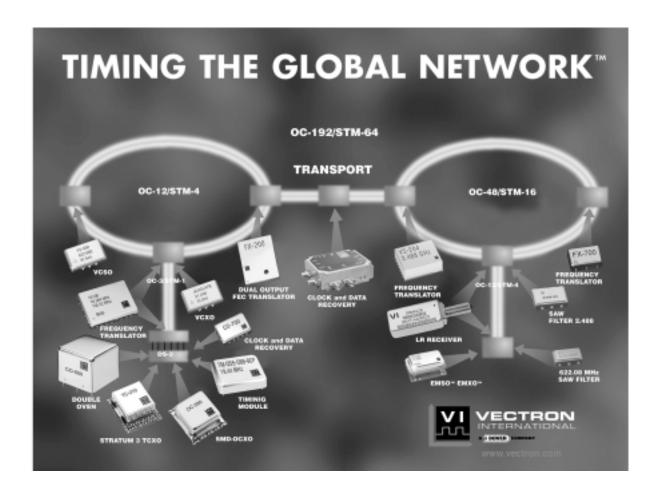
Note 1: Other frequencies are available upon request, please contact VI for details SS is code for non-standard frequencies, list the frequency after the part number.


Note 2: Not all combinations are possible.

Note 3: The output frequency must be equal to or greater than the input frequency.

Note 4: The output frequency divided by the input frequency (F_{OUT}/F_{IN}) must be an integer.

Note 5: The output frequency must also be equal to or greater than 100 kHz.


Ordering Information

EXAMPLE: FX-700-LAC-GNK-A3-K2

FX-700, 3.3V, CMOS output, 0 to $70C^{\circ}$ operating temperature,

±50 ppm APR, 40/60 % duty cycle with an 8kHz input and 77.760MHz output

For additional information please contact:

 USA: Vectron International • 267
 Lowell Road, Hudson, NH 03051
 Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON

 EUROPE:
 Tel: 49 (t) 3328 4784 17 * Fax: 49 (t) 3328 4784 30

 ASIA:
 Tel: +86 21 28909740 / 41 / 42
 Fax: +86 21 28909240 / 289099999

www.vectron.com

Vectron International reserves the right to make changes to the product(s) and/or information contained herein without notice.

No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

©2001, Vectron International.

Rev.21Jun02

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Vectron manufacturer:

Other Similar products are found below:

CV183-2TPAG 82P33814ANLG/W 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE

NB3H5150-01MNTXG PL602-20-K52TC PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE

ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 MAX24188ETK2

ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE PI6C557-03AQEX 5P35023-106NLGI 5X1503L-000NLGI8

ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2

SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30250LDG1 DSC557-0334FI1 DSC557-0343FI1