

VCS3 series 1.8, 2.5, 3.3 volt CMOS Oscillator

VCS3 Crystal Oscillator

Features

- · Quick delivery
- CMOS output
- 3.2mm x 2.5mm x 1.2 mm
- Output frequencies to 200.00 MHz
- · Tri-state output for board test and debug
- -10/70 or -40/85°C operating temperature
- · Gold over nickel contact pads
- · Hermetically sealed ceramic SMD package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

Applications

- SONET/SDH/DWDM
- Ethernet, Gigabit Ethernet
- Storage Area Network
- Digital Video
- Broadband Access
- Microprocessors/DSP/FPGA

Description

Vectron's VCS3 Crystal Oscillator (XO) is quartz stabilized square wave generator with a CMOS output, operating from a 1.8, 2.5 or 3.3 volt supply.

The VCS3 utilized a high performance, low frequency quartz resonator followed by a custom ASIC to synthesize the output frequency.

Table 1. Electrical Performance, 3.3V option					
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f_{O}	1.0		200.000	MHz
Operating Supply Voltage ¹	V_{DD}	2.97	3.3	3.63	V
Absolute Maximum Operating Voltage		-0.5		5.0	V
Supply Current, Output Enabled	I_{DD}				mA
<30 MHz				10	
30.01 to 75 MHz				15	
75.01 to 133 MHz				20	
133.01 to 200 MHz				25	
Supply Current, Output disabled	I_{DD}			15	uA
Output Logic Levels					
Output Logic High ²	V_{OH}	$0.9*V_{DD}$			V
Output Logic Low ²	V_{OL}			$0.1*V_{DD}$	V
Output Logic High Drive	I _{OH}	8			mA
Output Logic Low Drive	I _{OL}	8			mA
Output Rise/Fall Time ² , fo≤10MHz	$t_{R/}t_{F}$			3	ns
fo>10MHz				2	ns
Duty Cycle ³	SYM	45		55	%
Operating Temperature (<i>ordering option</i>)		-10/70 or -40/85		°C	
Storage Temperature		-55		125	°C
Stability ⁴ (ordering option)		±25, ±50, ±100		ppm	
Output Enable/Disable ⁵					V
Output Enabled		$0.7*V_{DD}$			
Output Disabled				$0.3*V_{DD}$	
Start-up time				2	ms

^{1.} A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground).

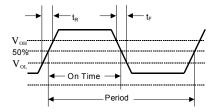


Figure 1. Output Waveform

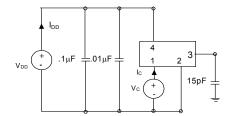
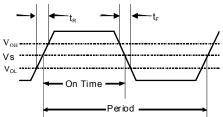
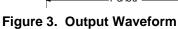


Figure 2. Typical Output Test Conditions (25±5°C)

^{2.} Figure 1 defines these parameters. Figure 2 illustrates the operating conditions under which these parameters are tested and specified.


^{3.} Symmetry is measured defined as On Time/Period.


^{4.} Includes calibration tolerance, operating temperature, supply voltage variations, aging and shock and vibration (not under operation).

^{5.} Output will be enabled if enable/disable is left open.

Table 2. Electrical Performance, 2.5V option					
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f_{O}	1.0		166.000	MHz
Operating Supply Voltage ¹	V_{DD}	2.25	2.5	2.75	V
Absolute Maximum Voltage		-0.5		5.0	V
Supply Current, Output Enabled	I_{DD}				mA
< 30 MHz				8.0	
30.01 to 75 MHz				10.0	
75.01 to 166 MHz				15.0	
Supply Current, Out disabled	I_{DD}			15	uA
Output Logic Levels					
Output Logic High ²	V_{OH}	$0.9*V_{DD}$			V
Output Logic Low ²	V_{OL}			0.1*V _{DD}	V
Output Logic High Drive	I _{OH}	8			mA
Output Logic Low Drive	I _{OL}	8			mA
Output Rise/Fall Time ² , fo≤10MHz	t_{R}/t_{F}			4	ns
fo>10MHz				3	ns
Duty Cycle ³	SYM	45		55	%
Operating Temperature (<i>ordering option</i>)		-10/70 or –40/85		°C	
Storage Temperature		-55		125	°C
Stability ⁴ (ordering option)			±25, ±50, ±10	00	ppm
Output Enable/Disable ⁵					V
Output Enabled		$0.7*V_{DD}$			
Output Disabled				0.3*V _{DD}	
Start-up time				2	Ms

^{1.} A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground).

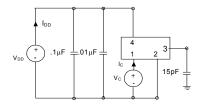
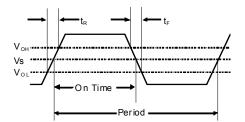


Figure 4. Typical Output Test Conditions (25±5°C)


^{2.} Figure 3 defines these parameters. Figure 4 illustrates the operating conditions under which these parameters are tested and specified.

^{3.} Symmetry is measured defined as On Time/Period.

^{4.} Includes calibration tolerance, operating temperature, supply voltage variations, aging and shock and vibration (not under operation).

^{5.} Output will be enabled if enable/disable is left open.

Table 3. Electrical Performance, 1.8V option					
Parameter	Symbol	Min	Typical	Maximum	Units
Frequency	f _O	0.8		133.00	MHz
Operating Supply Voltage ¹	V_{DD}	1.62	1.8	1.98	V
Absolute Maximum Voltage		-0.5		3.6	V
Supply Current, Output Enabled	I_{DD}				mA
< 30 MHz				6	
30.01 to 75 MHz				8	
75.01 to 133 MHz				12	
Supply Current, Out disabled	I_{DD}			15	uA
Output Logic Levels					
Output Logic High ²	V_{OH}	$0.9*V_{DD}$			V
Output Logic Low ²	V_{OL}			$0.1*V_{DD}$	V
Output Logic High Drive	I _{OH}	8			mΑ
Output Logic Low Drive	I _{OL}	8			mA
Output Rise/Fall Time ² , fo≤10MHz	t_{R}/t_{F}			5	ns
fo>10MHz				4	ns
Duty Cycle ³	SYM	45		55	%
Operating temperature (ordering option)		-	10/70 or -40/	85	°C
Storage Temperature		-55		125	°C
Stability ⁴ (ordering option)			±25, ±50, ±10	00	ppm
Output Enable/Disable ⁵					V
Output Enabled		$0.7*V_{DD}$			
Output Disabled				$0.3*V_{DD}$	
Start-up time				2	ms

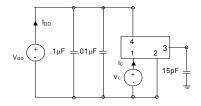


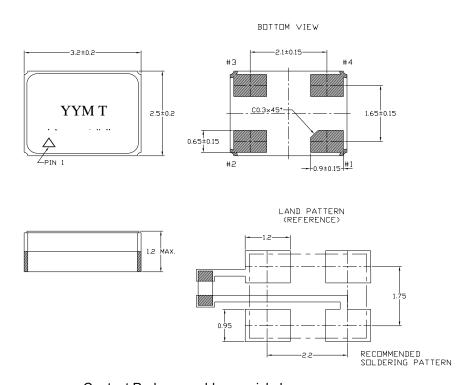
Figure 6. Typical Output Test Conditions (25±5°C)

A 0.01uF and a 0.1uF capacitor should be located as close to the supply as possible (to ground) is recommended.
 Figure 5 defines these parameters. Figure 6 illustrates the operating conditions under which parameters are tested/specified.

Symmetry is measured defined as On Time/Period.
 Includes calibration tolerance, operating temperature, supply voltage variations, aging and shock and vibration (not under operation).

5. Output will be enabled if enable/disable is left open.

Enable/Disable Functional Description


Under normal operation the Enable/Disable is left open or set to a logic high state. When the E/D is set to a logic low, the oscillator stops and the output is in a high impedance state. This helps reduce power consumption as well as facilitating board testing and troubleshooting.

Tri-state Functional Description

Under normal operation the tri-state is left open or set to a logic high state. When the tri-state is set to a logic low, the oscillator remains active but the output buffer is in a high impedance state. This helps facilitate board testing and troubleshooting.

Table 4. Outline Diagrams, Pad Layout and Pin Out

Pin #	Symbol	Function	
1	E/D	Tri-state, Enable/Disable	
2	GND	Electrical and Case Ground	
3	f _O	Output Frequency	
4	V_{DD}	Supply Voltage	

Contact Pads are gold over nickel

Figure 7, Package drawing

Reliability

The VCS3 qualification tests have included:

Table 5. Environnemental Compliance	
Parameter	Conditions
Mechanical Shock	MIL-STD-883 Method 2022
Mechanical Vibration	MIL-STD-883 Method 2007
Temperature Cycle	MIL-STD-883 Method 1010
Solderability	MIL-STD-883 Method 2003
Gross and Fine Leak	MIL-STD-883 Method 1014
Resistance to Solvents	MIL-STD-883 Method 2015
MSL	1

Handling Precautions

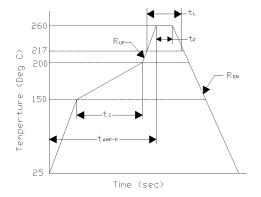
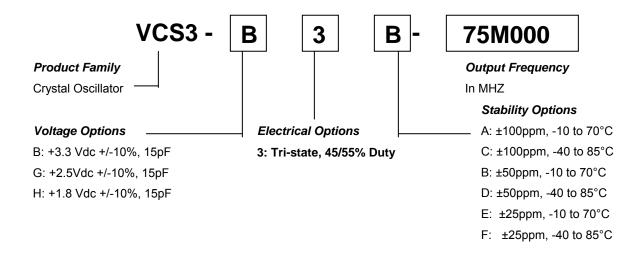

Although ESD protection circuitry has been designed into the the VCS3, proper precautions should be taken when handling and mounting. VI employs a Human Body Model and a Charged-Device Model (CDM) for ESD susceptibility testing and design protection evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry wide standard has been adopted for the CDM, a standard HBM of resistance = 1.5kohms and capacitance = 100pF is widely used and therefore can be used for comparison purposes.

Table 6. ESD Ratings		
Model	Minimum	Conditions
Human Body Model	1000	MIL-STD-883 Method 3115
Charged Device Model	1500	JESD 22-C101


Suggested IR profile

Devices are built using lead free epoxy and can also be subjected to standard lead free IR reflow conditions, Table 7 shows max temperatures and lower temperatures can also be used e.g. peak temperature of 220C.

Table 7. Reflow Profile (IPC/JEDEC J-STD-020)				
Parameter	Symbol	Value		
Preheat Time	ts	150 sec Min, 200 sec Max		
Ramp Up	Rup	3 °C/sec Max		
Time Above 217 °C	t _L	60 sec Min, 150 sec Max		
Time To Peak Temperature	t _{AMB-P}	480 sec Max		
Time At 260 °C (max)	t _P	20 sec Min, 40 sec Max		
Time At 240 °C (max)	t _{p2}	60 sec Max		
Ramp Down	R _{DN}	6 °C/sec Max		

Ordering Information

Note: Not all combinations are available.

For Additional Information, Please Contact:

USA: Vectron International • 267 Lowell Road, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • Fax: 1-888-FAX-VECTRON

www.vectron.com

Feb08, 2011

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard Clock Oscillators category:

Click to view products by Vectron manufacturer:

Other Similar products are found below:

601252 F335-12 F335-25 F535L-33.333 F535L-50 ASV-20.000MHZ-LR-T ECS-2018-160-BN-TR EL13C7-H2F-125.00M MXO45HS-2C-66.6666MHZ SiT8209AI-32-33E-125.000000 SM4420TEV-40.0M-T1K F335-24 F335-40 F535L-10 F535L-12 F535L-16 F535L-24 F535L-27 F535L-48 PE7744DW-100.0M CSX-750FCC14745600T ASF1-3.686MHZ-N-K-S XO57CTECNA3M6864 ECS-2100A-147.4 601251 EP16E7E2H26.000MTR SIT8918AA-11-33S-16.000000G XO3003 9120AC-2D2-33E212.500000 9102AI-243N25E100.00000 8208AC-82-18E-25.00000 ASDK2-32.768KHZ-LR-T3 8008AI-72-XXE-24.545454E 8004AC-13-33E-133.33000X AS-4.9152-16-SMD-TR ASFL1-48.000MHZ-LC-T SIT8920AM-31-33E-25.0000 DSC1028DI2-019.2000 9121AC-2C3-25E100.00000 9102AI-233N33E100.00000X 9102AI-233N25E200.00000 9102AI-232H25S125.00000 9102AI-133N25E200.00000 9102AC-283N25E200.00000 9001AC-33-33E1-30.000 XLH536125.000JS4I 3921AI-2CF-33NZ125.000000 5730-1SF PXA000010 SIT1602BC-83-33E-10.0000000Y