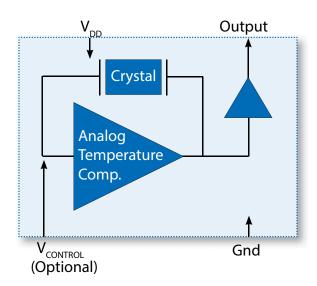






Vectron's VT-704 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, Clipped sine wave or CMOS output, analog temperature compensated oscillator, operating off a 2.5V to 3.3 volt supply in a hermetically sealed 7.0 x 5.0 mm ceramic package.


### **Features**

- Clipped Sine Wave or CMOS Output
- 5.000 52.000MHz Output Frequency
- ±0.5ppm Temperature Stability
- Optional Frequency Tuning
- Fundamental Crystal Design
- · Gold over nickel contact pads
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

# **Applications**

- Femto Cells
- Base Stations
- IP Networking
- Global Positioning Systems
- Point to Point Radio
- Manpack Radio
- Test and Measurement

# **Block Diagram**



# **Specifications**

| Table 1. Electrical Performance, Clipped                      | d Sine Wave Op     | otion                          |                    |                 |        |
|---------------------------------------------------------------|--------------------|--------------------------------|--------------------|-----------------|--------|
| Parameter                                                     | Symbol             | Min.                           | Тур                | Max             | Units  |
| Output Frequency <sup>1</sup> , Ordering Option               | $f_{o}$            | 5                              |                    | 52              | MHz    |
| Supply Voltage <sup>3</sup> , Ordering Option                 | V <sub>DD</sub>    | +2                             | .5, +2.8, +3.0, +3 | 3.3             | V      |
| Supply Current                                                | I <sub>DD</sub>    |                                |                    | 3.5             | mA     |
| Operating Temperature, Ordering Option                        | T <sub>OP</sub>    | 0/55, -10/70, -                | -20/70, -30/80, -  | 30/85, -40/85   | °C     |
|                                                               | Frequen            | cy Stability                   |                    |                 |        |
| Stability Over T <sub>OP</sub> <sup>4</sup> , Ordering Option | F <sub>STAB</sub>  | ±0.5, ±1.0, ±1.                | .5 , ±2.0, ±2.5, ± | 3.0, ±4.0, ±5.0 | ppm    |
| Frequency Tolerance <sup>5</sup>                              | F <sub>TOL</sub>   |                                |                    | ±2.0            | ppm    |
| Power Supply Stability, ±5%                                   | F <sub>PWR</sub>   |                                |                    | ±0.1            | ppm    |
| Load Stability, ±10%                                          | F <sub>LOAD</sub>  |                                |                    | ±0.2            | ppm    |
| Aging / 1st year                                              | $F_{AGE}$          |                                |                    | ±1.0            | ppm    |
| Fr                                                            | equency Tuning (   | (EFC), Ordering O <sub>l</sub> | otion              |                 |        |
| Tuning Range <sup>6</sup>                                     | PR                 | ±5.0                           | ppm                |                 |        |
| Tuning Slope                                                  |                    |                                | Positive           |                 |        |
| Control Voltage to reach Pull Range                           | V <sub>c</sub>     | 0.5                            | 1.5                | 2.5             | V      |
| Control Voltage Impedance                                     |                    | 100                            |                    |                 | Kohm   |
| RF Ou                                                         | tput (Clipped Sir  | ne Wave), <i>Orderin</i> g     | g Option           |                 |        |
| Output Level High                                             | V <sub>o</sub> р-р | 0.8                            |                    |                 | V      |
| Output Load                                                   | $C_{L}$            |                                | 10k    10pF        |                 |        |
| Start Up Time                                                 | t <sub>su</sub>    |                                |                    | 2               | ms     |
|                                                               | Phase              | e Noise <sup>7</sup>           |                    |                 |        |
| Phase Noise, 10.00MHz <sup>7</sup>                            | 0 <sub>N</sub>     |                                |                    |                 | dBc/Hz |
| 10Hz<br>100Hz                                                 |                    |                                | -96<br>-122        |                 |        |
| 100H2<br>  1kHz                                               |                    |                                | -122<br>-140       |                 |        |
| 10kHz                                                         |                    |                                | -148               |                 |        |
| 100kHz                                                        |                    |                                | -153               |                 |        |

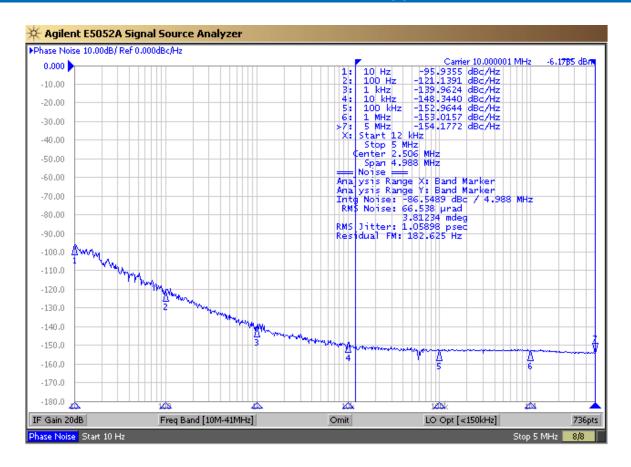
<sup>1.</sup> Refer to Table 8 for Standard Frequencies. Other Frequencies are available on request. Check with factory.

<sup>2.</sup> Output DC-cut capacitor is optional.

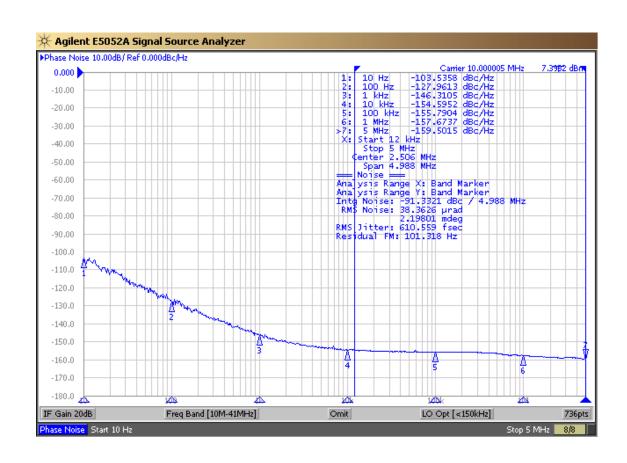
<sup>3.</sup> The VT-704 power supply pin (Pin4) should be filtered using a by-pass capacitor of 0.1uF for optimal performance.

<sup>4.</sup> Referenced to the midpoint between minimum and maximum frequency value over Operating Temperature Range.

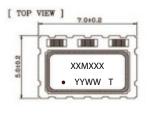
<sup>5.</sup> Frequency measured at 25 °C, 1 hour after 2 IR reflows.

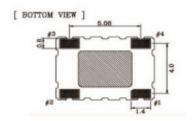

<sup>6.</sup> Referenced to Mid Control Voltage

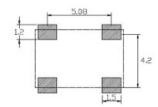
<sup>7.</sup> Measured at ambient temperature using Agilent E5052B Signal Source Analyzer.


| Table 2. Electrical Performance, CMOS                          | Option                             |                      |                                     |                     |        |  |  |
|----------------------------------------------------------------|------------------------------------|----------------------|-------------------------------------|---------------------|--------|--|--|
| Parameter                                                      | Symbol                             | Min.                 | Тур                                 | Max                 | Units  |  |  |
| Output Frequency <sup>1</sup> , Ordering Option                | $f_{o}$                            | 5                    |                                     | 52                  | MHz    |  |  |
| Supply Voltage <sup>3</sup> , Ordering Option                  | $V_{_{ m DD}}$                     | +2                   | .5, +2.8, +3.0, +3                  | 3.3                 | V      |  |  |
| Supply Current                                                 | I <sub>DD</sub>                    |                      |                                     | 6.0                 | mA     |  |  |
| Operating Temperature, Ordering Option                         | T <sub>OP</sub>                    | 0/55, -10/70, -      | -20/70, -30/80, -                   | 30/85, -40/85       | °C     |  |  |
|                                                                | Frequen                            | cy Stability         |                                     |                     |        |  |  |
| Stability Over T <sub>OP</sub> <sup>4</sup> , Ordering Option  | F <sub>STAB</sub>                  | ±0.5, ±1.0, ±1.      | 5 , ±2.0, ±2.5, ±                   | 3.0, ±4.0, ±5.0     | ppm    |  |  |
| Frequency Tolerance <sup>5</sup>                               | F <sub>TOL</sub>                   |                      |                                     | ±2.0                | ppm    |  |  |
| Power Supply Stability, ±5%                                    | F <sub>PWR</sub>                   |                      |                                     | ±0.1                | ppm    |  |  |
| Load Stability, ±10%                                           | F <sub>LOAD</sub>                  |                      |                                     | ±0.2                | ppm    |  |  |
| Aging / 1st year                                               | F <sub>AGE</sub>                   |                      |                                     | ±1.0                | ppm    |  |  |
| Frequency Tuning (EFC), Ordering Option                        |                                    |                      |                                     |                     |        |  |  |
| Tuning Range <sup>6</sup>                                      | PR                                 | ±5.0                 | ppm                                 |                     |        |  |  |
| Tuning Slope                                                   |                                    | Positive             |                                     |                     |        |  |  |
| Control Voltage to reach Pull Range                            | V <sub>c</sub>                     | 0.5                  | 1.5                                 | 2.5                 | V      |  |  |
| Control Voltage Impedance                                      |                                    | 100                  |                                     |                     | Kohm   |  |  |
|                                                                | RF Output (CMO                     | S), Ordering Option  | on                                  |                     |        |  |  |
| Output Level High<br>Output Level Low                          | V <sub>OH</sub><br>V <sub>OL</sub> | 0.9*V <sub>DD</sub>  |                                     | 0.1*V <sub>DD</sub> | V      |  |  |
| Output Load                                                    | C <sub>L</sub>                     |                      |                                     | 15                  | pF     |  |  |
| Duty Cycle                                                     |                                    | 45                   |                                     | 55                  | %      |  |  |
| Start Up Time                                                  | t <sub>su</sub>                    |                      |                                     | 2                   | ms     |  |  |
| Rise & Fall Times                                              |                                    |                      |                                     | 4                   | ns     |  |  |
|                                                                | Phase                              | e Noise <sup>7</sup> |                                     |                     |        |  |  |
| Phase Noise, 10.00MHz <sup>7</sup> 10Hz 100Hz 1kHz 10kHz 10kHz | 0 <sub>N</sub>                     |                      | -98<br>-129<br>-145<br>-153<br>-156 |                     | dBc/Hz |  |  |

- 1. Refer to Table 8 for Standard Frequencies. Other Frequencies are available on request. Check with factory.
- 2. Output DC-cut capacitor is optional.
- 3. The VT-704 power supply pin (Pin4) should be filtered using a by-pass capacitor of 0.1uF for optimal performance.
- 4. Referenced to the midpoint between minimum and maximum frequency value over Operating Temperature Range.
- 5. Frequency measured at 25 °C, 1 hour after 2 IR reflows.
- 6. Referenced to Mid Control Voltage.
- 7. Measured at ambient temperature using Agilent E5052B Signal Source Analyzer


# **Phase Noise Performance for 10MHz Clipped Sine Wave**





## **Phase Noise Performance for 10MHz CMOS**



## **Package Outline Drawing & Pad Layout**









Dimensions in mm

Marking Information

XXMXX - Frequency (Example: 10M000)

YY - Year of Manufacture

WW - Week of the Year

T - Manufacturing Location

- Pin 1 Indicator

| Table 3. Pinout |                 |                                             |  |  |  |  |  |  |
|-----------------|-----------------|---------------------------------------------|--|--|--|--|--|--|
| Pin#            | Symbol          | Function                                    |  |  |  |  |  |  |
| 1               | Vc or NC        | Vc or NC TCXO Control Voltage or No Connect |  |  |  |  |  |  |
| 2               | GND             | GND Ground                                  |  |  |  |  |  |  |
| 3               | OUT             | RF Output                                   |  |  |  |  |  |  |
| 4               | V <sub>DD</sub> | Supply Voltage                              |  |  |  |  |  |  |

#### Note:

0.1uF capacitor is a by-pass power supply filter capacitor placed between Pin4 (Vdd) and Ground for optimal performance.

### **VCXO Function**

**VCXO Feature**: The VT-704 is supplied with a VCXO function for applications were it will be used in a PLL, or the output frequency needs fine tune or calibration adjustments. This is a high impedance input, 100kOhm, and can be driven with an op-amp or terminated with adjustable resistors etc. **Pin1 should not be left floating on the VCXO optional device.** 

## **Maximum Ratings**

#### **Absolute Maximum Ratings and Handling Precautions**

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

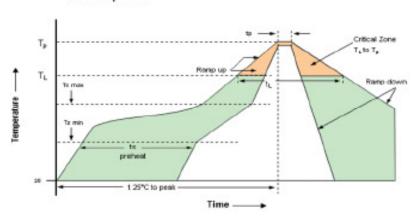
Although ESD protection circuitry has been designed into the VT-704, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for

the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

| Table 4. Maximum Ratings  |                    |                           |      |
|---------------------------|--------------------|---------------------------|------|
| Parameter                 | Symbol             | Rating                    | Unit |
| Storage Temperature       | T <sub>STORE</sub> | -55/125                   | °C   |
| Supply Voltage            | $V_{_{ m DD}}$     | -0.6/6                    | V    |
| Control Voltage           | $V_{c}$            | -0.6/V <sub>DD</sub> +0.6 | V    |
| Enable/Disable Voltage    | E/D                | -0.6/V <sub>DD</sub> +0.6 | V    |
| ESD, Human Body Model     |                    | 1500                      | V    |
| ESD, Charged Device Model |                    | 1000                      | V    |

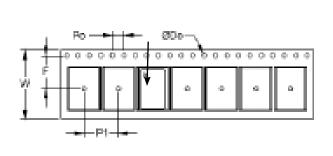
# Reliability

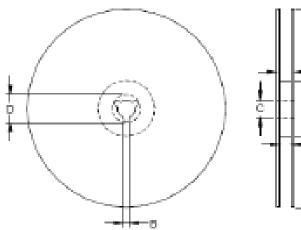
| Table 5. Environmental Compliance |                         |  |  |  |  |
|-----------------------------------|-------------------------|--|--|--|--|
| Parameter                         | Condition               |  |  |  |  |
| Mechanical Shock                  | MIL-STD-883 Method 2002 |  |  |  |  |
| Mechanical Vibration              | MIL-STD-883 Method 2007 |  |  |  |  |
| Temperature Cycle                 | MIL-STD-883 Method 1010 |  |  |  |  |
| Solderability                     | MIL-STD-883 Method 2003 |  |  |  |  |
| Fine and Gross Leak               | MIL-STD-883 Method 1014 |  |  |  |  |
| Resistance to Solvents            | MIL-STD-883 Method 2015 |  |  |  |  |
| Moisture Sensitivity Level        | MSL1                    |  |  |  |  |
| Contact Pads                      | Gold over Nickel        |  |  |  |  |

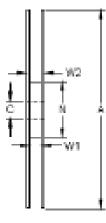

# **IR Reflow**

### **Suggested IR Profile**

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 6. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220°C.


| Table 6. Reflow Profile          |                          |                               |
|----------------------------------|--------------------------|-------------------------------|
| Parameter                        | Symbol                   | Value                         |
| PreHeat Time<br>Ts-min<br>Ts-max | <b>t</b> <sub>s</sub>    | 200 sec Max<br>150°C<br>200°C |
| Ramp Up                          | $R_{UP}$                 | 3°C/sec Max                   |
| Time above 217C                  | t <sub>L</sub>           | 150 sec Max                   |
| Time to Peak Temperature         | t <sub>25C to peak</sub> | 480 sec Max                   |
| Time at 260C                     | t <sub>p</sub>           | 30 sec Max                    |
| Time at 240C                     | t <sub>P2</sub>          | 60 sec Max                    |
| Ramp down                        | $R_{_{\mathrm{DN}}}$     | 6°C/sec Max                   |

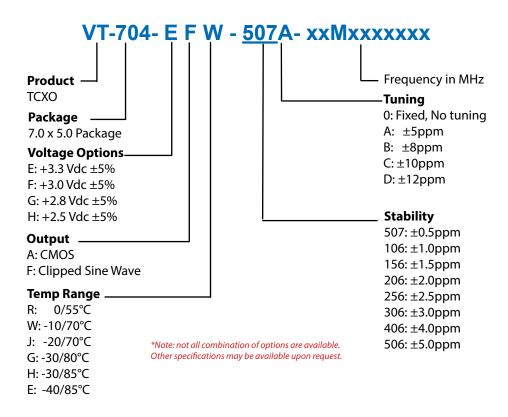

### Solderprofile:




# Tape & Reel

| Table 7.                                 | Tape and | Reel Info | rmation |    |        |     |    |      |    |      |      |        |
|------------------------------------------|----------|-----------|---------|----|--------|-----|----|------|----|------|------|--------|
| Tape Dimensions (mm) Reel Dimensions (mn |          |           |         |    | s (mm) |     |    |      |    |      |      |        |
| W                                        | F        | Do        | Ро      | P1 | Α      | В   | С  | D    | N  | W1   | W2   | #/Reel |
| 16                                       | 7.5      | 1.5       | 4       | 8  | 180    | 1.5 | 13 | 20.2 | 60 | 16.4 | 20.4 | 1000   |








# **Ordering Information**

| Table 8. Sta | ındard Frequ | iencies (MHz | 2)     |        |        |        |        |        |        |
|--------------|--------------|--------------|--------|--------|--------|--------|--------|--------|--------|
| 8.000        | 8.192        | 10.000       | 12.800 | 16.000 | 16.384 | 19.200 | 19.440 | 25.000 | 26.000 |
| 40.000       |              |              |        |        |        |        |        |        |        |
|              |              |              |        |        |        |        |        |        |        |

Note: Other Frequencies are available on request.



Example: VT-704-EFW-507A-12M8000000

\* Add **\_SNPBDIP** for tin lead solder dip Example: VT-704-EFW-507A-12M8000000 SNPBDIP

# **Revision History**

| Revision Date   | Approved | Description                                                                   |  |  |
|-----------------|----------|-------------------------------------------------------------------------------|--|--|
| May 4, 2015     | VN       | Rev 0.1: VT-704 Product Preliminary Datasheet - Internal Verification         |  |  |
| May11, 2015     | VN       | Rev 0.2: Preliminary Datasheet Website (Product Launch)                       |  |  |
| June 16, 2015   | VN       | Rev 0.3: Added temperature code "G" for -30/80 °C operating temperature range |  |  |
| June 14, 2016   | VN       | Rev 0.4: Removed "Preliminary".                                               |  |  |
| August 10, 2018 | FB       | Updated logo and contact information,, added "SNPBDIP" ordering option        |  |  |



#### Microsemi Headquarters

microsemi Headquarters
One Enterprise, Aliso Vielo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996 email: sales.support@microsemi.com www microsemi com

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the worlds standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any post and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP injustic, whether with regard to such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party and microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for TCXO Oscillators category:

Click to view products by Vectron manufacturer:

Other Similar products are found below:

SiT5000AI-3D-33E0-10.000000X THD3031035LK280005-10.0M CVT32-10.000 SIT5356AI-FQ-33E0-25.000000X

XTCLH25M000THJA0P0 LFTCXO075793Cutt LFTCXO077229Cutt LFPTXO000002Bulk LFTCXO077228Cutt LFTCXO077230Cutt

LFTCXO075792Cutt LFPTXO000001Bulk LFTCXO063711BULK LFTCXO063713BULK LFTCXO063715BULK LFTCXO063780BULK

LFTCXO070027Cutt LFTCXO070028Cutt LFTCXO070033Cutt LFTCXO070037Cutt LFTCXO070179Cutt LFTCXO070180Cutt

LFTCXO007009BULK DS32KHZST&R XNCLH20M000CHJA3P0 XNCLH25M000THJA0P0 XNCLH30M720THJA1P0

XTCLH16M384THJA2P0 XTCLH20M000CHJA0P0 XTCLH30M720THJA0P0 NT2016SA-26.000000MHZ-NBG2 SIT1552AI-JE-DCC-32.768E SIT1566AI-JE-18E-32.768E SIT1552AI-JF-DCC-32.768D SIT1566AI-JV-18E-32.768E SIT5000AICGE-33N0-25.000000X

SiT5021AI-2BE-33VQ200.000000X SiT5155AI-FK-33E0-10.000000X SiT5155AI-FK-33VT-10.000000X SiT5156AI-FK-33E0-25.000000X

SiT5157AI-FK-33N0-100.000000X 7Q16300001 7L-38.400MDG-T 7Z-26.000MBG-T LFTCXO075792 LFTCXO075797

LFPTXO000009Bulk LFPTXO000316Bulk SiT5000AICGE-33E0-25.000000X SiT1568AI-JE-DCC-32.768E