

Unit

 $\rm V_{\rm DC}$

V_{DC}

 V_{DC}

V_{DC}

V_{DC}

V_{RMS}

V_{RMS}

V_{RMS}

°C

°C

°F (°C)

°F (°C)

in-lbs (N-m)

Industrial and process control, distributed power, medical, ATE, communications, defense

DC-DC Converter Module

Notes

See Module Output

Specifications

Test voltage

Test voltage

Test voltage

M-Grade

M-Grade

6 each

<5 sec; wave solder

<7 sec; hand solder

Features & Benefits

- DC input range: 18 36V
- Isolated output
- Operation to 16V at 75% power after startup
- Input surge withstand: 50V for 100ms
- DC output: 3.3 48V
- Programmable output: 10 to 110%
- Regulation: ±0.25% no load to full load
- Efficiency: Up to 88%
- Maximum operating temp: 100°C, full load
- Power density: up to 99W per cubic inch
- Height above board: 0.43in. (10,9mm)
- Parallelable, with N+M fault tolerance
- Low noise ZCS/ZVS architecture
- RoHS Compliant (with F or G pin option)

Product Overview

These DC-DC converter modules use advanced power processing, control and packaging technologies to provide the performance, flexibility, reliability and cost effectiveness of a mature power component.

High frequency ZCS/ZVS switching provides high power density with low noise and high efficiency.

Part Numbering 24A B e.g. V24A12T400BL2 ÷., **Output Power** Pin Style Product Grade Temperatures (°C) Finish Baseplate Product Type Output Voltage Operating Tin/Lead Grade Storage Vout Pour Blank: Short Blank: Slotted 3V3 = 3.3V V = Standard = -10 to +100 - 20 to +125L: Long Tin/Lead 2: Threaded Ε 3.3V 200W. 264W 5 = 5VS = Enhanced S: Short ModuMate Gold = -20 to +100 - 40 to +1253: Through-hole С **6.5** = 6.5V 5V 300W, 400W efficiency (avail. ≤12 Т = -40 to +100 -40 to +125N: Long ModuMate Gold 6 5V 400W **8** = 8V V_{OUT} only) н = -40 to +100 - 55 to +125F: Short RoHS Gold 12 = 12V8V 300W M = -55 to +100 - 65 to +125G: Long RoHS Gold 12V 300W, 400W, 500W 15 = 15VK: Extra Long RoHS Gold 15V300W, 400W 24 = 24V24V 300W, 400W, 500W 28 = 28V 300W, 400W, 500W 28V **36** = 36V **48** = 48V 36V 300W, 400W 48V 300W, 400W

Applications

and aerospace.

Parameter

+IN to -IN voltage

PC to -IN voltage

PR to -IN voltage

Isolation voltage IN to OUT

IN to base

OUT to base

Operating Temperature

Pin soldering temperature

Storage Temperature

Mounting torgue

SC to -OUT voltage

-Sense to -OUT voltage

+OUT to -OUT, +Sense to -OUT

For details on proper operation please refer to the:

Absolute Maximum Ratings

Design Guide & Applications Manual for Maxi, Mini, Micro Family.

Rating

-0.5 to +53

-0.5 to +7.0

-0.5 to +7.0

-0.5 to +1.5

1.0

3000

1500

500

-55 to +100

-65 to +125

500 (260)

750 (390)

5 (0.57)

Rev 6.8 06/2017

Module Family Electrical Characteristics

Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified. All temperatures refer to the operating temperature at the center of the baseplate.

MODULE INPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Operating input voltage	18	24	36	V _{DC}	These modules will operate at up to 75% of rated power down to 16 $V_{\rm IN}$ after start up at ${>}18V_{\rm IN}$
Input surge withstand			50	V _{DC}	<100ms
Undervoltage turn-on		17.5	17.9	V _{DC}	
Undervoltage turn-off	14.8	15.3		V _{DC}	
Overvoltage turn-off/on	36.3	37.8	39.6	V _{DC}	
Disabled input current			4.0	mA	PC pin low

MODULE OUTPUT SPECIFICATIONS

Parameter	Min	Тур	Мах	Unit	Notes
Output voltage setpoint			±1	%	Of nominal output voltage. Nominal input; full load; 25°C
Line regulation		±0.02	±0.20	%	Low line to high line; full load
Temperature regulation		±0.002	±0.005	% / °C	Over operating temperature range
Power sharing accuracy		±2	±5	%	10 to 100% of full load
Programming range	10		110	%	Of nominal output voltage. For trimming below 90% of nominal, a minimum load of 10% of maximum rated power may be required.
+OUT to -OUT, +Sense to -OUT	Г – Absolute Max	imum Rating	<u>s_</u>		
3.3V			-0.5 to 4.7	V _{DC}	Externally applied
5V			-0.5 to 7.0	V _{DC}	Externally applied
6.5V			-0.5 to 9.0	V _{DC}	Externally applied
8V			-0.5 to 10.9	V _{DC}	Externally applied
12V			-0.5 to 16.1	V _{DC}	Externally applied
15V			-0.5 to 20.0	V _{DC}	Externally applied
24V			-0.5 to 31.7	V _{DC}	Externally applied
28V			-0.5 to 36.9	V _{DC}	Externally applied
36V			-0.5 to 47.2	V _{DC}	Externally applied
48V			-0.5 to 62.9	V _{DC}	Externally applied

Note: The permissible load current must never be exceeded during normal, abnormal or test conditions. For additional output related application information, please refer to output connections on page 10.

THERMAL RESISTANCE AND CAPACITY

Parameter	Min	Тур	Мах	Unit	
Baseplate to sink; flat, greased surface		0.08		°C/Watt	
Baseplate to sink; thermal pad (P/N 20263)		0.07		°C/Watt	
Baseplate to ambient		4.9		°C/Watt	
Baseplate to ambient; 1000LFM		1.1		°C/Watt	
Thermal capacity		165		Watt-sec/°C	

Module Family Electrical Characteristics (Cont.)

MODULE CONTROL SPECIFICATIONS

Parameter	Min	Тур	Мах	Unit	Notes		
Primary Side (PC = Primary Co	ontrol; PR = Paralle	el)					
PC bias voltage current limit	5.50 1.5	5.75 2.1	6.00 3.0	V _{DC} mA		PC current = 1.0mA PC voltage = 5.5V	During normal operation
PC module disable	2.3	2.6	2.9	V _{DC}		Switch must be able to s	sink ≥4mA. See Fig. 2
PC module enable delay		4	7	ms			
PC module alarm			0.5	Vavg		UV, OV, OT, module faul	t. See Figs. 3 and 5
PC resistance	0.9	1.0	1.1	MΩ		See Fig. 3, converter off	or fault mode
PR emitter amplitude	5.7	5.9	6.1	Volts		PR load >30 Ω , <30pF	
PR emitter current	150			mA			
PR receiver impedance	375	500	625	Ω		25°C	
PR receiver threshold	2.4	2.5	2.6	Volts		Minimum pulse width: 2	?Ons
PR drive capability			12	modules		Without PR buffer ampli	fier
Secondary Side (SC = Second	ary Control)						
SC bandgap voltage	1.21	1.23	1.25	V_{DC}		Referenced to –Sense	
SC resistance	990	1000	1010	Ω			
SC capacitance		0.033		μF			
SC module alarm		0		V _{DC}		With open trim; reference	ed to –Sense. See Fig. 7

MODULE GENERAL SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Remote sense (total drop)			0.5	V _{DC}	0.25V per leg (sense leads must be connected to respective, output terminals)
Isolation test voltage (IN to OUT)*	3000			V _{RMS}	Complies with reinforced insulation requirements
Isolation test voltage (IN to base)*	1500			V _{RMS}	Complies with basic insulation requirements
Isolation test voltage (OUT to base)*	500			V _{RMS}	Complies with operational insulation requirements
Isolation resistance		10		MΩ	IN to OUT, IN to baseplate, OUT to baseplate
Weight (E, C, T grade)	6.5 (184.3)	7.3 (207.5)	8.1 (230.7)	ounces (grams)	
Weight (H, M grade)	7.4 (209.3)	8.2 (232.5)	9.0 (255.7)	ounces (grams)	
Temperature limiting	100	115		°C	See Figs. 3 and 5. Do not operate coverter >100°C.
Agency approvals	c	URus, cTÜVus, C	E		UL60950-1, EN60950-1, CSA60950-1, IEC60950-1. With appropriate fuse in series with the +Input

* Isolation test voltage, 1 minute or less.

Note: Specifications are subject to change without notice.

3.3V_{OUT}, 264W (e.g. S24A3V3C264BL, V24A3V3C264BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A3V3C264BL (enhanced efficiency)	83.0	86.0		%	Nominal input; full load; 25°C
V24A3V3C264BL (standard efficiency)	80.0	81.4			
Ripple and noise		75	94	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	4.14	4.3	4.46	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		8	12	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		80	Amps	
Current limit	81.6	92	108	Amps	Output voltage 95% of nominal
Short circuit current	56	92	108	Amps	Output voltage <250mV

3.3V_{OUT}, 200W (e.g. S24A3V3C200BL, V24A3V3C200BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A3V3C200BL (enhanced efficiency)	82.0	86.0		%	Nominal input; full load; 25°C
V24A3V3C200BL (standard efficiency)	73.9	79.9			
Ripple and noise		43	54	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	4.48	4.65	4.82	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		6.2	10	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		60.6	Amps	
Current limit	61.8	69.7	81.9	Amps	Output voltage 95% of nominal
Short circuit current	42.4	69.7	81.9	Amps	Output voltage <250mV

5V_{OUT}, 400W (e.g. S24A5C400BL, V24A5C400BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A5C400BL (enhanced efficiency)	84.0	86.5		%	Nominal input; full load; 25°C
V24A5C400BL (standard efficiency)	80.0	84.5			
Ripple and noise		152	190	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	6.03	6.25	6.47	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		6.8	10.1	Watts	No load
Load regulation		±0.02	±0.25	%	No load to full load; nominal input
Load current	0		80	Amps	
Current limit	81.6	92	104	Amps	Output voltage 95% of nominal
Short circuit current	56	92	104	Amps	Output voltage <250mV

5V_{OUT}, 300W (e.g. S24A5C300BL, V24A5C300BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A5C300BL (enhanced efficiency)	82.5	84.4		%	Nominal input; full load; 25°C
V24A5C300BL (standard efficiency)	82.5	84.4			
Ripple and noise		120	150	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	6.03	6.25	6.47	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		7.2	8.8	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		60	Amps	
Current limit	61.2	69	81	Amps	Output voltage 95% of nominal
Short circuit current	42	69	81	Amps	Output voltage <250mV

6.5V_{OUT}, 400W (e.g. S24A6V5C400BL, V24A6V5C400BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A6V5C400BL (enhanced efficiency)	85.0	86.1		%	Nominal input; full load; 25°C
V24A6V5C400BL (standard efficiency)	85.0	86.1			
Ripple and noise		220	275	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	7.7	7.98	8.26	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		9.2	10.5	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Output Current	0		61.5	Amps	
Current limit	62.7	70.7	83.1	Amps	Output voltage 95% of nominal
Short circuit current	43	70.7	83.1	Amps	Output voltage <250mV

8V_{OUT}, 300W (e.g. S24A8C300BL, V24A8C300BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A8C300BL (enhanced efficiency)	85.6	86.5		%	Nominal input; full load; 25°C
V24A8C300BL (standard efficiency)	85.6	86.5			
Ripple and noise		215	269	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	9.36	9.7	10.1	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		8.7	13.9	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		37.5	Amps	
Current limit	38.2	43.1	50.7	Amps	Output voltage 95% of nominal
Short circuit current	26.2	43.1	50.7	Amps	Output voltage <250mV

12V_{OUT}, 500W (e.g. S24A12C500B, V24A12C500BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A12C500B (enhanced efficiency)	86.7	88.2		%	Nominal input; full load; 25°C
V24A12C500BL (standard efficiency)	86.0	87.5			
Ripple and noise		272	340	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	13.8	14.3	14.8	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		10.8	12.0	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		41.67	Amps	
Current limit	42.5	47.9	56.3	Amps	Output voltage 95% of nominal
Short circuit current	29.2	47.9	56.3	Amps	Output voltage <250mV

12V_{OUT}, 400W (e.g. S24A12C400BL, V24A12C400BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A12C400BL (enhanced efficiency)	86.0	89.5		%	Nominal input; full load; 25°C
V24A12C400BL (standard efficiency)	87.0	88.3			
Ripple and noise		250	320	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	13.7	14.3	14.9	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		6.8	10.2	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		33.33	Amps	
Current limit	34	38.4	43.5	Amps	Output voltage 95% of nominal
Short circuit current	23.3	38.4	43.5	Amps	Output voltage <250mV

12V_{OUT}, 300W (e.g. S24A12C300BL, V24A12C300BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency					
S24A12C300BL (enhanced efficiency)	88.0	89.5		%	Nominal input; full load; 25°C
V24A12C300BL (standard efficiency)	87.0	88.2			
Ripple and noise		196	245	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	13.7	14.3	14.9	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		6.9	8.6	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		25	Amps	
Current limit	25.5	28.8	33.8	Amps	Output voltage 95% of nominal
Short circuit current	17.5	28.8	33.8	Amps	Output voltage < 250mV

15V_{OUT}, 400W (e.g. V24A15C400BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	88.0	89.0		%	Nominal input; full load; 25°C
Ripple and noise		60	75	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	17.1	17.8	18.5	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		6.3	9.4	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		26.67	Amps	
Current limit	27.2	30.7	34.8	Amps	Output voltage 95% of nominal
Short circuit current	18.6	30.7	37.9	Amps	Output voltage <250mV

15V_{OUT}, 300W (e.g. V24A15C300BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	85.0	86.2		%	Nominal input; full load; 25°C
Ripple and noise		160	200	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	17.1	17.8	18.5	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		8.1	10	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		20	Amps	
Current limit	20.4	23	27	Amps	Output voltage 95% of nominal
Short circuit current	14	23	27	Amps	Output voltage <250mV

24V_{OUT}, 500W (e.g. V24A24C500BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	87.3	88.3		%	Nominal input; full load; 25°C
Ripple and noise		172	215	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	27.1	28.1	29.1	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		11.9	19.1	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		20.83	Amps	
Current limit	21.3	24.0	28.1	Amps	Output voltage 95% of nominal
Short circuit current	14.6	24.0	28.1	Amps	Output voltage <250mV

24V_{OUT}, 400W (e.g. V24A24C400BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	88.0	89.1		%	Nominal input; full load; 25°C
Ripple and noise		80	100	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	27.1	28.1	29.1	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		11	12	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		16.67	Amps	
Current limit	17	19.2	23.4	Amps	Output voltage 95% of nominal
Short circuit current	2.25	19.2	23.4	Amps	Output voltage <250mV

24V_{OUT}, 300W (e.g. V24A24C300BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	86.8	88.2		%	Nominal input; full load; 25°C
Ripple and noise		85	107	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	27.1	28.1	29.1	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		7.8	10	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		12.5	Amps	
Current limit	12.7	14.4	16.9	Amps	Output voltage 95% of nominal
Short circuit current	8.75	14.4	16.9	Amps	Output voltage <250mV

28V_{OUT}, 500W (e.g. V24A28C500BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	86.0	88.0		%	Nominal input; full load; 25°C
Ripple and noise		172	215	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	31.5	32.7	33.9	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		13.5	14.8	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		17.9	Amps	
Current limit	18.3	20.6	24.2	Amps	Output voltage 95% of nominal
Short circuit current	12.5	20.6	24.2	Amps	Output voltage <250mV

28V_{OUT}, 400W (e.g. V24A28C400BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	86.0	87.8		%	Nominal input; full load; 25°C
Ripple and noise		172	215	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	31.5	32.7	33.9	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		6.3	9.5	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		14.29	Amps	
Current limit	14.5	16.4	19.4	Amps	Output voltage 95% of nominal
Short circuit current	10	16.4	19.4	Amps	Output voltage <250mV

28V_{OUT}, 300W (e.g. V24A28C300BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	87.0	88.0		%	Nominal input; full load; 25°C
Ripple and noise		100	125	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	31.5	32.7	33.9	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		7.1	9.3	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		10.71	Amps	
Current limit	10.9	12.3	14.5	Amps	Output voltage 95% of nominal
Short circuit current	3	12.3	14.5	Amps	Output voltage <250mV

36V_{OUT}, 400W (e.g. V24A36C400BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	86.0	88.0		%	Nominal input; full load; 25°C
Ripple and noise		120	150	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	40.4	41.9	43.4	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		10	13	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		11.11	Amps	
Current limit	11.3	12.8	15	Amps	Output voltage 95% of nominal
Short circuit current	7.77	12.8	15	Amps	Output voltage <250mV

36V_{OUT}, 300W (e.g. V24A36C300BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	87.0	88.3		%	Nominal input; full load; 25°C
Ripple and noise		80	100	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	40.4	41.9	43.4	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		9.8	12	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		8.33	Amps	
Current limit	8.49	9.58	11.3	Amps	Output voltage 95% of nominal
Short circuit current	5.83	9.58	11.3	Amps	Output voltage <250mV

48V_{OUT}, 400W (e.g. V24A48C400BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	84.7	86.7		%	Nominal input; full load; 25°C
Ripple and noise		160	200	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	53.8	55.8	57.8	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		11.8	12.7	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		8.33	Amps	
Current limit	8.49	9.58	11.3	Amps	Output voltage 95% of nominal
Short circuit current	4.79	9.58	11.3	Amps	Output voltage <250mV

48V_{OUT}, 300W (e.g. V24A48C300BL)

Parameter	Min	Тур	Max	Unit	Notes
Efficiency	86.0	87.1		%	Nominal input; full load; 25°C
Ripple and noise		180	225	mV	p-p; Nominal input; full load; 20MHz bandwidth
Output OVP setpoint	53.7	55.7	57.7	Volts	25°C; recycle input voltage or PC to restart (>100ms off)
Dissipation, standby		7.7	10	Watts	No load
Load regulation		±0.02	±0.2	%	No load to full load; nominal input
Load current	0		6.25	Amps	
Current limit	6.37	7.19	8.44	Amps	Output voltage 95% of nominal
Short circuit current	4.37	7.19	8.44	Amps	Output voltage <250mV

Basic Module Operation

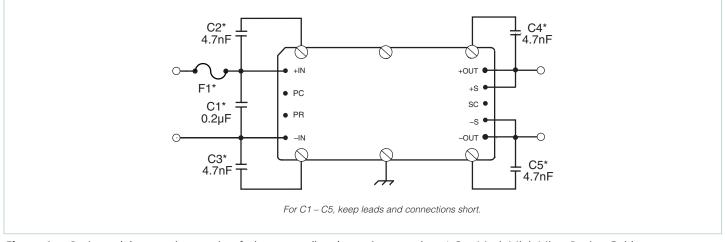
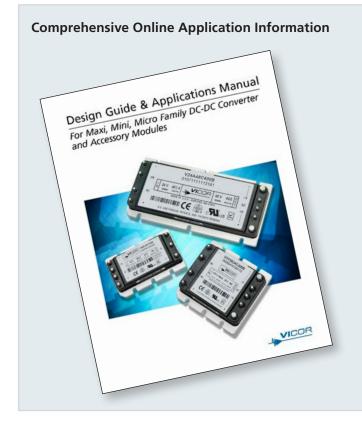



Figure 1 — Basic module operation requires fusing, grounding, bypassing capacitors.* See Maxi, Mini, Micro Design Guide.

Output Connections and Considerations

The permissible load current must never be exceeded during normal, abnormal or test conditions. Converters subject to dynamic loading exceeding 25% of rated current must be reviewed by Vicor Applications Engineering to ensure that the converter will operate properly.

Under dynamic load, light load, or no load conditions, the converter may emit audible noise. Converters that utilize remote sense may require compensation circuitry to offset the phase lag caused by the external output leads and load impedance.

Remote Sense leads must be protected for conditions such as lead reversal, noise pickup, open circuit, or excessive output lead resistance between the sense point and the converters output terminals. For applications that may draw more than the rated current, a fast acting electronic circuit breaker must be utilized to protect the converter. Under no circumstance should the rated current be exceeded. Utilizing or testing of current limit or short circuit current will damage the converter. Ensure that the total output capacitance connected to the converter does not exceed the limits on Page 16, "Maximum Output Capacitance", of the design guide.

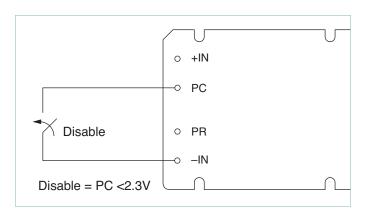
The Design Guide and Applications Manual includes:

- Application circuits
- Design requirements
- EMC considerations
- Current sharing in power arrays
- Thermal performance information
- Recommended soldering methods
- Accessory modules filtering, rectification, front-ends
- Mounting options
- ...and more.

CLICK HERE TO VIEW DESIGN GUIDE

Also at vicorpower.com

- PowerBench online configurators
- Over 20 Application Notes
- Online calculators thermal, trimming, hold-up
- PDF data sheets for ALL Vicor products


Primary Control - PC PIN

Module Enable/Disable

The module may be disabled by pulling PC below 2.3V with respect to the –Input. This may be done with an open collector transistor, relay, or optocoupler. Multiple converters may be disabled with a single transistor or relay either directly or via "OR'ing" diodes. See Figure 2.

Primary Auxiliary Supply

At 5.7V, PC can source up to 1.5mA. In the example shown in Figure 4, PC powers a module enabled LED.

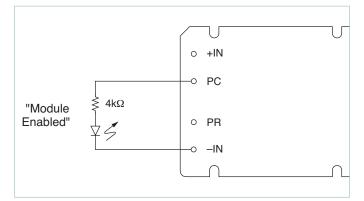
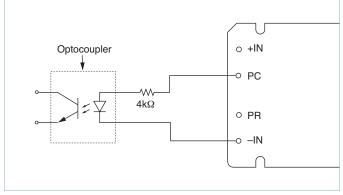
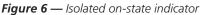




Figure 4 — LED on-state indicator

Module Alarm

The module contains "watchdog" circuitry which monitors input voltage, operating temperature and internal operating parameters. In the event that any of these parameters are outside of their allowable operating range, the module will shut down and PC will go low. PC will periodically go high and the module will check to see if the fault (as an example, overtemperature) has cleared. If the fault has not been cleared, PC will go low again and the cycle will restart. The SC pin will go low in the event of a fault and return to its normal state after the fault has been cleared. See Figures 3 and 5.

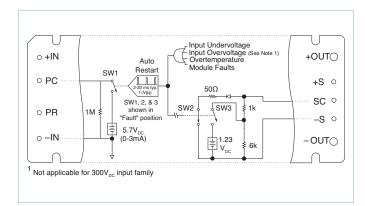


Figure 3 — PC/SC module alarm logic

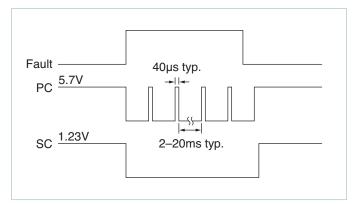


Figure 5 — PC/SC module alarm timing

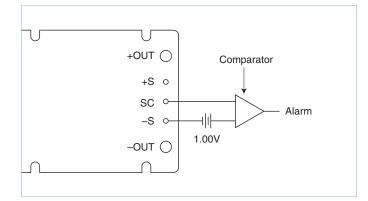


Figure 7 — Secondary side on-state indicator

Secondary Control - SC PIN

Output Voltage Programming

The output voltage of the converter can be adjusted or programmed via fixed resistors, potentiometers or voltage DACs. See Figure 8.

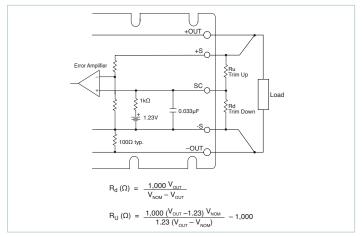


Figure 8 — Output voltage trim down and trim up circuit

Trim Down

- This converter is <u>not</u> a constant power device it has a constant current limit. Hence, available output power is reduced by the same percentage that output voltage is trimmed down. Do not exceed maximum rated output current.
- 2. The trim down resistor must be connected between the SC and -S pins. Do not bypass the SC pin directly with a capacitor.

Trim Up

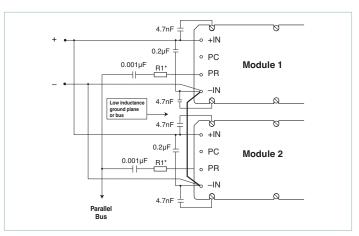
- 1. The converter is rated for a maximum delivered power. To ensure that maximum rated power is not exceeded, reduce maximum output current by the same percentage increase in output voltage.
- 2. The trim up resistor must be connected between the SC and +S pins. Do not bypass the SC pin directly with a capacitor.
- Do not trim the converter above maximum trim range (typically +10%) or the output over voltage protection circuitry may be activated.

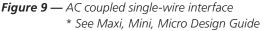
Trim resistor values calculated automatically:

On-line calculators for trim resistor values are available on the vicor website at: <u>asp.vicorpower.com/calculators/calculators.asp?calc=1</u> Resistor values can be calculated for fixed trim up, fixed trim down and for variable trim up or down.

Parallel Bus - PR PIN

Parallel Operation


The PR pin supports paralleling for increased power with N+1 (N+M) redundancy. Modules of the same input voltage, output voltage, and power level will current share if all PR pins are suitably interfaced.


Compatible interface architectures include the following:

AC coupled single-wire interface. All PR pins are connected to a single communication bus through 0.001μ F (500V) capacitors. This interface supports current sharing and is fault tolerant except for the communication bus. Up to three converters may be paralleled by this method. See Figure 9.

Transformer coupled interface. For paralleling four or more converters a transformer coupled interface is required, and under certain conditions a PR buffer circuit.

For details on parallel operation please refer to the Design Guide & Applications Manual for Maxi, Mini, Micro Family.

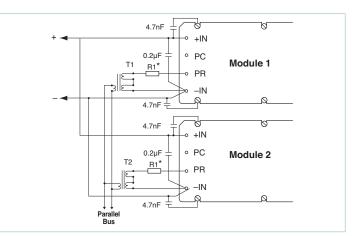


Figure 10 — Transformer-coupled interface

Number of Converters in Parallel	*R1 value Ω
2	75
3	50
4	33
5 or more	refer to application note: Designing High-Power Arrays using Maxi, Mini, Micro Family DC-DC Converters

Parallel Bus Output

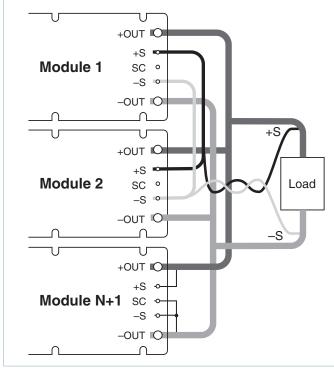


Figure 11 — N+1 module array output connections

- The +OUT and –OUT power buses should be designed to minimize and balance parasitic impedance from each module output to the load.
- The +Sense pins must be tied together to form a +Sense bus. <u>This must be Kelvin connected to +OUT at a</u> <u>single point</u>. The –Sense pins should be tied together to form a –Sense bus. <u>This must be Kelvin connected to –OUT</u> <u>at a single point</u>.
- At the discretion of the power system designer, a subset of all modules within an array may be configured as slaves by connecting SC to –S.
- OR'ing diodes may be inserted in series with the +OUT pins of each module to provide module output fault tolerance.
- The +Sense and -Sense leads should be routed in close proximity to each other on the printed circuit board. If wires are used to connect the converters on a PCB to an external load, the Sense leads should be twisted together to reduce noise pickup.

Designator	Description	Finish	Notes
(None)	Short	Tin/Lead	Requires in-board, mounting
L	Long	Tin/Lead	On-board mounting for 0.065" boards
S	Short ModuMate	Gold	SurfMate or in-board socket mounting
Ν	Long ModuMate	Gold	On-board socket mounting
F	Short RoHS	Gold	Select for RoHS compliant in-board solder, socket, or SurfMate mounting
G	Long RoHS	Gold	Select for RoHS compliant on-board solder or socket mounting
К	Extra Long RoHS	Gold	Select for RoHS compliance on-board mounting for thicker PCBs (not intended for socket or Surfmate mounting)

*Pin style designator follows the "B" after the output power and precedes the baseplate designator. Ex. V48A12T500BN2 — Long ModuMate Pins

Storage

PIN STYLES*

Vicor products, when not installed in customer units, should be stored in ESD safe packaging in accordance with ANSI/ESD S20.20, "Protection of Electrical and Electronic Parts, Assemblies and Equipment" and should be maintained in a temperature controlled factory/ warehouse environment not exposed to outside elements controlled between the temperature ranges of 15°C and 38°C. Humidity shall not be condensing, no minimum humidity when stored in an ESD compliant package.

Mechanical Drawings

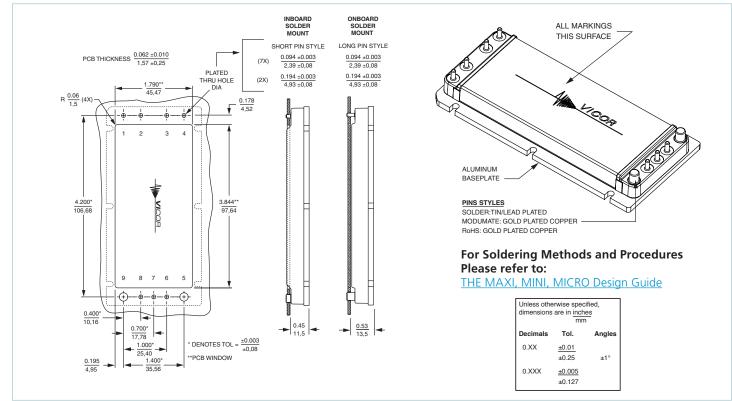



Figure 12 — Module outline

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Visit <u>http://www.vicorpower.com/dc-dc-converters-board-mount/high-density-dc-dc-converters</u> for the latest product information.

Vicor's Standard Terms and Conditions and Product Warranty

All sales are subject to Vicor's Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor's webpage (http://www.vicorpower.com/termsconditionswarranty) or upon request.

Life Support Policy

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

Vicor Corporation

25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715

email

Customer Service: <u>custserv@vicorpower.com</u> Technical Support: <u>apps@vicorpower.com</u>

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SparkFun Accessories category:

Click to view products by SparkFun manufacturer:

Other Similar products are found below :

 DEV-17119
 SEN-16474
 COM-11450
 BOB-00495
 BOB-00497
 BOB-00499
 DEV-13598
 PRT-08619
 PRT-11363
 PRT-12702
 SEN-13582

 TOL-11468
 ROB-10551
 COM-12986
 COM-11120
 COM-14731
 COM-14646
 COM-11222
 PRT-12845
 CAB-13685
 PRT-10210
 PRT

 14490
 TOL-10603
 PRT-08023
 PRT-10361
 PRT-10897
 PRT-12619
 BOB-10467
 WIG-08758
 KIT-13973
 PRT-11541
 PRT-14322
 PRT

 13777
 PRT-14429
 COM-00540
 COM-13015
 COM-08643
 PRT-08430
 PRT-09740
 COM-10917
 TOL-10602
 PRT-09914
 TOL-12572

 PRT-09011
 COM-11020
 TOL-13246
 PRT-11710
 DEV-10524
 PRT-10571