Analog HV and LV 6123 ChiP $^{\text {TM }}$ BCM $^{\circledR}$
 Bus Converter Evaluation Board User Guide

Peter Makrum
Applications Engineer

Contents	Page
Introduction	1
Enable Options:	1
Fault Monitor Options:	1
Contents	2
Features	3
Board Description	3
General Components	3
Test Points Description	5
Bill of Materials	10
Recommended	
Test Equipment	11
Basic Connections	12
Board Operation Details	12
Thermal Considerations	12
Paralleling	13

! IMPORTANT NOTICE:

Hazardous voltages are present on the HV BCM ${ }^{\circledR}$ Evaluation Board under power.

PERSONAL CONTACT WITH LINE VOLTAGE MAY RESULT IN SEVERE INJURY, DISABILITY, OR DEATH. IMPROPER OR UNSAFE HANDLING OF THIS BOARD MAY RESULT IN SERIOUS INJURY OR DEATH.

Read the precautions below entirely BEFORE using the BCM evaluation board. Do not operate the evaluation board unless appropriate bench safety precautions are in place to guarantee safety.

The list below is not comprehensive and is not a substitute for common sense and good practice.

- During operation, the power devices and surrounding structures can be operated safely at high temperatures.
- Remove power and use caution when connecting and disconnecting test probes and interface lines to avoid inadvertent short circuits and contact with hot surfaces.
- Never use a jumper in place of the fuse.
- When testing electronic products always use approved safety glasses. Follow good laboratory practice and procedures.
- Avoid creating ground loops when making measurements of the isolated input or output voltage.
- Care should be taken to protect the user from accidental contact when under power.
- Care should be taken to avoid reversing polarities if connecting to the opposite (solder) side of the board.
- The product evaluation boards described in this document are designed for general laboratory evaluation and are not suitable for installation in end user equipment.
- Refer to the specific BCM module data sheet for electrical, thermal, and mechanical product details.

These boards provide a convenient way to evaluate / demonstrate the performance of the Vicor BCM products. Kelvin connections are provided for accurate voltage measurements on power nodes. Sockets are provided to permit quick installation and changing of bulk-filtering capacitors. The evaluation board also provides lugs for Input / output connections, test points and sockets for easy connection to standard test equipment and a high performance air-cooled heat sink assembly.

Contents

The evaluation board arrives with the following contents:

- $1 \times$ BCM evaluation board

■ $1 \times$ Top heat sink pre-installed as well as a bottom of the ChiPTM heat sink when applicable

- $1 \times$ Hardware kit:
- $1 \times$ through hole aluminum-electrolytic output capacitor (C121)
- $3 \times$ Connector receptacle 8 position
- $2 \times$ Connector socket 2 position
- $5 \times$ Size 10 screws, lugs and washers

Features

The $B C M^{\circledR}$ evaluation board has the following features:

1. Input and output lugs for source and load connections
2. Appropriately rated input fuse
3. Input aluminum electrolytic capacitor for additional source decoupling
4. Basic output filtering footprint, including sockets to add through hole output aluminum electrolytic capacitors
5. Toggle switch for enabling and disabling the BCM via the enable (EN) pin
6. Oscilloscope probe jack for accurate, high-frequency output voltage measurements
7. Connectors for BCM signal pins (TM, EN, and VAUX) and temperature monitor filtered signal
8. Kelvin voltage test points for all power pins
9. Top and bottom heat sink assembly for the BCM where applicable

Board Description

The following section provides a detailed description of the evaluation board components, test points and sockets.

General Components

1. $\mathrm{BCM}(\mathrm{PSO1)}$
2. Input lugs: Sized for \#10 hardware. Use for making connection to the input source. This board does not contain reverse polarity protection. Check for proper polarity before applying the power. It is important to remember that noise from the source and voltage drops will appear at the output of the bus converter multiplied by transformation ratio (K). The K factor is the ratio of the output voltage to the input voltage ($\left.\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$.
3. Input fuse (F101 \& F102): Appropriately rated for the BCM model installed on the board. The fuse is not meant to protect the module.
4. Input filtering: aluminum electrolytic input capacitor (C101).
5. Enable / Disable switch (SW101): When actuator is in top position towards "ON" text on the board, the (EN) pin will be open and the BCM will be enabled. When actuator is in bottom position towards "OFF" text on the board, the (EN) pin will be connected to (-IN) pin and the BCM will be disabled. When switch (SW101) is "ON", an external voltage source can control the EN pin state.
6. Signal connector (J102): provides access to the bus converter signal pins (TM, EN, and VAUX) as well as (TM_DC) externally filtered signal. All signal pins are reference to the primary non-isolated voltage return (-IN) pin.

- Temperature Monitor (TM): The BCM (TM) pin outputs a 250 kHz PWM signal. A $1 \mathrm{k} \Omega$ and a 10 nF is the recommended low-pass filtering solution. (TM_PWM) and filtered (TM_DC) are both accessible on (J102) connector header. (TM_DC) measures 1.27 V for a $27^{\circ} \mathrm{C}$ internal temperature corresponding to a (TM_PWM) duty cycle of 38.48%.
- Enable Control (EN): Connecting the BCM (EN) pin to (-IN) will disable the module. (SW101) can be used to turn off the power train and disable the module. The (EN) pin is internally pulled up. This connector can be used to bus the (EN) pin in an array allowing array synchronous start up.
- Auxiliary Voltage Source (VAUX): The BCM (VAUX) can be used as a fault flag it is internally driven low during a fault condition. The (VAUX) pin can also be used as a ready-to-process full-power flag. A 2 ms delay from power train active is introduced on this pin signaling the end of soft start. During normal operation this pin can be used as an auxiliary supply up to 4 mA max load.

Figure 1

7. Output lugs: Sized for \#10 hardware. Use these lugs to connect the output directly to the load.
8. Output oscilloscope probe Jack (J101): Used for making accurate scope measurements of the output voltage (e.g., ripple). The jack is directly compatible with many common passive voltage probes models. Remove the grounding lead and insulating barrel of the probe and insert the probe tip and barrel directly into the jack, ensuring that the probe tip sits in the center socket of the jack. To avoid the risk of an inadvertent short circuit, do not attempt to install while power is applied. This Johnson Jack is Kelvin connected to the module output pins. The effect of the output capacitors will not be noticeable.
9. Output filter: 10x output ceramic capacitors 1206 footprint provision (C103, C104, C113, C114, C115, C116, C117, C118, C119, and C120). In addition to socket (C121) that can be used for easy installation of an aluminum electrolytic output capacitor included with in hardware kit of the evaluation board.
10. Isolation barrier: R106, R107, R108 each are a 2010 package. The footprint can be used to provide a convenient means to short the isolation barrier or provided an additional AC path using capacitors.

Figure 2
PCB\#42030 Evaluation Board Photo, Top Side

Test Points Description

Test nodes are labeled and include an SMT test point for attaching miniature probes, clips or hooks.

Table 1 Primary-Referenced Test Point Descriptions	Name	Description
	$+\mathrm{V}_{\mathbb{I N}},-\mathrm{V}_{\mathbb{I N}}$	Provide measurement test points for the input voltage of the $B C M^{\circledR}$ module. Test points are Kelvin connected to the module input pins.
	EN	Used to measure the BCM EN pin relative to $-\mathrm{V}_{\mathbb{I N}}$.
	TM_DC	Used to measure the filtered BCM TM signal using a recommended low-pass filter relative to $-\mathrm{V}_{\mathrm{IN}}$.
	TM_PWM	Used to measure the BCM TM pin which is a pulse width modulated output signal relative to $-\mathrm{V}_{\mathbb{I N}}$.
	VAUX	Used to measure the BCM VAUX pin output signal relative to $-V_{\mathbb{I N}}$.
Table 2 Secondary-Referenced Test Point Descriptions	Name	Description
	$+\mathrm{V}_{\text {OUT, }}-\mathrm{V}_{\text {OUT }}$	Provide measurement test points for the output voltage of the BCM module. Test points are Kelvin connected to the module output pins.

Figure 3 PCB\#42030 Evaluation Board Schematic

Figure 4 PCB\#42143 Evaluation Board Schematic

Figure 5 PCB\#42030 Evaluation Board

Figure 6
BPCB\#42030 Evaluation Board

Figure 7
PCB\#42143 Evaluation Board

Figure 8
PCB\#42143 Evaluation Board

Bill of Materials

Following table describes the design specific components of all 6123 BCM $^{\circledR}$ evaluation boards.

Table 3 BCM Evaluation Board	Reference Designator	Description	Manufacturer	Manufacturer Part Number
Components Common	C101	CAP ALEL 10ヶF 20\% 450V RAD	United Chemi-Con	EKXG451ELL100MK20S
to all Boards	C102	CAP X7R .010 ${ }^{\text {F }}$ 10\% 50V 0603	Murata Manufacturing	GRM188R71H103KA01D
	D101	DLED RED 0805	Rohm	SML-211UTT86
	F101	Design specific - See Table 4		
	F102			
	J101	JACK VERTICAL MECH THRU HOLE	Tektronix	131-5031-00
	$J 102$	CONN HEADER R/A . 100 8POS 30AU	TE Connectivity Ltd	5-103166-2
	HSO1	Design specific - See Table 4		
	PCB Part Number	Design specific - See Table 4		
	R103, R104, R105	RES 0Ω JUMPER 1A 0603	KOA Speer Electronics	RK7321JTTD
	R102	RES 750 1/10W 5\% 0603	KOA Speer Electronics	RK73B1JTTD751J
	R101	RES 1k $1 / 10 \mathrm{~W} 1 \% 0603$	KOA Speer Electronics	RK73H1JTTD1001F
	SW101	SW Horizontal SPDT 1 POS SMD	C\&K Components	GT11MSABETR

Table 4
BOM Additions, Components which are $B C M^{\circledR}$ Model Specific

Reference Designator	Description	Manufacturer	Manufacturer Part Number
Evaluation board numbers: BCM6123E60E15A3T00; BCM6123E60E10A5T00			
PS01	LV BCM	Vicor Corporation	BCM6123T60E15A3T00; BCM6123T60E10A5T00
PCB Part Number	BCM Evaluation Board	Vicor Corporation	42030
F102	FUSE 40A 60VAC FAST 4.5X12.5 SMD	Littelfuse	0456040.DR
HSO1	BOM HEAT SINK, TOP	Vicor Corporation	42676
Evaluation board numbers: BCM6123ED1E13A3T00; BCM6123ED1E1368T00; BCM6123ED1E13A3T0R; BCM6123ED1E1368TOR; BCM6123ED1E2663T00			
PS01	HV BCM	Vicor Corporation	BCM6123TD1E13A3T00; BCM6123TD1E1368T00; BCM6123TD1E13A3TOR; BCM6123TD1E1368TOR; BCM6123TD1E2663T00
PCB Part Number	BCM Evaluation Board	Vicor Corporation	42030
F101	FUSE PC-TRON PCI 5A	Cooper Industries	PCI-5-R
HSO1	BOM HEAT SINK, TOP	Vicor Corporation	42676
Evaluation board numbers: BCM6123ED1E5135T00; BCM6123ED1E5126T00; BCM6123ED1E5117T00; BCM6123ED1E5135TOR; BCM6123ED1E5126T0R; BCM6123ED1E5117TOR			
PSO1	HV BCM	Vicor Corporation	BCM6123TD1E5135T00; BCM6123TD1E5126T00; BCM6123TD1E5117T00; BCM6123TD1E5135TOR; BCM6123TD1E5126TOR; BCM6123TD1E5117TOR
PCB Part Number	BCM Evaluation Board	Vicor Corporation	42143
F101	FUSE PC-TRON PCI 5A	Cooper Industries	PCI-5-R
HSO1	BOM ASSY 6123 DUAL HTSNK NO TIM FOR 11 mm	Vicor Corporation	40528

Recommended Test Equipment

The following is a list of recommended test equipment.

1. Safety glasses
2. DC power supply: Refer to the specific BCM model datasheet to ensure the supply has sufficient power and current capability
3. Electronic load: Refer to the specific BCM model datasheet to ensure the load has sufficient power handling and current capability for testing
4. Cooling fan
5. Digital multi-meters (DMMs)
6. Oscilloscope and probes
7. Interconnect wires, cables and fastening hardware

Basic Connections

- Confirm bench equipment is powered off.
- Connect the input DC power supply positive lead to the +IN input lug of the evaluation board, connect the input power supply negative lead to the -IN input lug of the evaluation board.
- Connect the CHASSIS_GND lug of the evaluation board to a safety "green wire" earth ground.
- Connect the +OUT lug of the evaluation board to the electronic load positive input, connect the -OUT lug of the evaluation board to the electronic load negative input.
- Verify proper polarity of the connections.
- Verify (SW101) desired actuator position.
- Direct airflow from the cooling fan through the BCM^{\circledR} heat sink fins.
- Have the latest BCM datasheet on hand for reference.

Board Operation Details

- SW01 provides control over enable.

■ In the "OFF" position, the switch will connect -IN pin to the EN net, which disables the BCM.

- In the "ON" position, the EN net is allowed to float.
- External connection to EN is permitted using the EN test point. (SWO1) should be set to "ON" to allow external control.
- The (J102) paralleling connectors can be used to connect EN nets across different boards. Note: to enable the BCMs in a parallel array, all boards need (SW01) set to "ON" to avoid pulling the EN node low.
- The heat sink assembly of the BCM is connected to the CHASSIS_GND lug. A connection from the CHASSIS_GND lug to earth ground is required for safety as the heat sink will be floating otherwise.
- The visible LED at D101 and its bias resistor network (R102 \& R105) are connected to the VAUX pin. LED turns "ON" when VAUX is high signaling that the BCM is ready to process full power.
- Primary input voltage greater than the undervoltage lockout must be applied to enable the BCM power train. This applies to all products listed in this document which includes reversible products.

Thermal Considerations

The evaluation board is supplied with a pre-installed 11 mm double-sided heat sink assembly for PCB\#42143 and a 27 mm top only for PCB\#42030. A fan blowing across the evaluation board and heat sink assembly is required during operation at load. The fan should be placed about four inches away from the evaluation board facing the output voltage side. A typical bench top fan is recommended providing about 1000LFM. Using the supplied rubber feet is also required in order to elevate the board about 0.4 inches off a flat surface and enable air flow underneath the PCB.

The PCB top layer used for the 42676 heat sink ChiPTM is required to be of the same potential of the heat sink. This is to allow heat transfer from the bottom of the ChiP and leads to the heat sink. CHOMERICS GEL-8010 is used on both top and bottom surface of the ChiP. (Between the ChiP top and heat sink as well as the ChiP bottom and the PCB). It is also required to apply to the heat sink extended surface resting on the PCB.

Paralleling

The paralleling and sharing performance of multiple BCMs can be easily demonstrated by stacking multiple evaluation boards and interconnecting the inputs and outputs with standoffs to create a parallel array. Each $B C M^{\circledR}$ in an array operates in the same way as it does as a stand-alone unit. With equal impedance, the load is effectively shared across multiple BCMs. Mismatches in this case are modest and are further canceled by an effective-negative voltage vs. temperature coefficient.

The following connections and settings should be used for an array of BCM evaluation boards:

- All BCMs in a parallel array must be the same model.
- The boards should be physically stacked using metal standoffs at the +IN \& -IN lugs, the +OUT \& -OUT lugs and the CHASSIS_GND lug. This also connects these nodes electrically so that a single source, single load and earth-ground connection can be made to the system.
- The +IN lugs are required to be connected together for an array of BCMs.
- Standoffs must be sufficient in length to avoid contact between boards and to permit airflow to all BCMs in the system.
- If coordinated enable control then the paralleling connectors (J102) can be used to easily interconnect the EN pin across boards.
- The paralleling connector receptacle (J102) is provided to daisy chain EN signal and $-\mathrm{V}_{\mathrm{IN}}$. The will accept a wire size range $26-22 \mathrm{AWG}, 0.12-0.3 \mathrm{~mm}^{2}$ wires.
The paralleling and current sharing capability of the devices can be demonstrated by stacking multiple evaluation boards and interconnecting the inputs and outputs with standoffs of sufficient current rating to create a parallel array. If synchronous start up is desired, connect EN pin 5 and -VIN pin 6 in (J102) using a twisted pair to all respective pins in different paralleled units.

Figure 9
BCM Evaluation Boards Stacked to Form a High-Power Parallel Array, Using Common -IN and the Paralleling Connectors.

Paralleling of BCM Evaluation Board.

Limitation of Warranties

Information in this document is believed to be accurate and reliable. HOWEVER, THIS INFORMATION IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTIES, EXPRESSED OR IMPLIED, AS TO THE ACCURACY OR COMPLETENESS OF SUCH INFORMATION. VICOR SHALL HAVE NO LIABILITY FOR THE CONSEQUENCES OF USE OF SUCH INFORMATION. IN NO EVENT SHALL VICOR BE LIABLE FOR ANY INDIRECT, INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR SAVINGS, BUSINESS INTERRUPTION, COSTS RELATED TO THE REMOVAL OR REPLACEMENT OF ANY PRODUCTS OR REWORK CHARGES).

Vicor reserves the right to make changes to information published in this document, at any time and without notice. You should verify that this document and information is current. This document supersedes and replaces all prior versions of this publication.

All guidance and content herein are for illustrative purposes only. Vicor makes no representation or warranty that the products and/or services described herein will be suitable for the specified use without further testing or modification. You are responsible for the design and operation of your applications and products using Vicor products, and Vicor accepts no liability for any assistance with applications or customer product design. It is your sole responsibility to determine whether the Vicor product is suitable and fit for your applications and products, and to implement adequate design, testing and operating safeguards for your planned application(s) and use(s).

VICOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN LIFE SUPPORT, LIFE-CRITICAL OR SAFETY-CRITICAL SYSTEMS OR EQUIPMENT. VICOR PRODUCTS ARE NOT CERTIFIED TO MEET ISO 13485 FOR USE IN MEDICAL EQUIPMENT NOR ISO/TS16949 FOR USE IN AUTOMOTIVE APPLICATIONS OR OTHER SIMILAR MEDICAL AND AUTOMOTIVE STANDARDS. VICOR DISCLAIMS ANY AND ALL LIABILITY FOR INCLUSION AND/OR USE OF VICOR PRODUCTS IN SUCH EQUIPMENT OR APPLICATIONS AND THEREFORE SUCH INCLUSION AND/OR USE IS AT YOUR OWN RISK.

Terms of Sale

The purchase and sale of Vicor products is subject to the Vicor Corporation Terms and Conditions of Sale which are available at: (http://www.vicorpower.com/termsconditionswarranty)

Export Control

This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from U.S. export authorities.

Contact Us: http://www.vicorpower.com/contact-us

> Vicor Corporation
> 25 Frontage Road
> Andover, MA, USA 01810
> Tel: 800-735-6200
> Fax: 978-475-6715
> www.vicorpower.com
> email
> Customer Service: $\underline{\text { custserv@vicorpower.com }}$
> Technical Support: apps@vicorpower.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Vicor manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

