

preliminary datasheet

flowPACK 2 3rd gen 1200V/150A Features flow2 housing High power flow2 housing Trench Fieldstop Technology IGBT4 Compact and low inductive design **Target Applications** Schematic Motor Drive Power Generation • UPS Types • V23990-P680-F

Maximum Ratings

Parameter	Symbol	Condition	Value	Unit
Inverter Transistor				
Collector-emitter break down voltage	V _{CE}		1200	V
DC collector current	Ι _C	T _j =T _j max T _c =80°C T _c =80°C	134 150	A
Repetitive peak collector current	I _{Cpulse}	t _p limited by T _j max	450	А
Power dissipation per IGBT	P _{tot}	T _j =T _j max T _c =80°C T _c =80°C	313 475	W
Gate-emitter peak voltage	V _{GE}		±20	V
Short circuit ratings	t _{SC} V _{CC}	Tj≤150°C V _{GE} =15V	10 800	μs V
Maximum Junction Temperature	T _j max		175	°C
Inverter Diode				
Peak Repetitive Reverse Voltage	V _{RRM}	T _j =25°C	1200	V
DC forward current	I _F	T _j =T _j max T _c =80°C T _c =80°C	110 145	A
Repetitive peak forward current	I _{FRM}	t _p limited by T _j max	300	А
Power dissipation per Diode	P _{tot}	T _j =T _j max T _h =80°C T _c =80°C	189 287	W
Maximum Junction Temperature	T _j max		175	°C
Thermal Properties				
Storage temperature	T _{stg}		-40+125	°C

Operation temperature under switching condition

°C

-40...+(Tjmax - 25)

 T_{op}

preliminary datasheet

Maximum Ratings

Tj=25°C, unless otherwise specified				
Parameter	Symbol	Condition	Value	Unit
Insulation Properties				
Insulation voltage	V _{is}	t=2s DC voltage	4000	V
Creepage distance			min 12,7	mm
Clearance			min 12,7	mm

Characteristic Values

Parameter Symbo	Symbol	bol Conditions					Value			Unit	
			V _{GE} [V] or V _{GS} [V]	V _r [V] or V _{CE} [V] or V _{DS} [V]	I _C [A] or I _F [A] or I _D [A]	Tj	Min	Тур	Max		
Inverter Transistor											
Gate emitter threshold voltage	V _{GE(th)}	VCE=VGE			0.006	Tj=25°C Tj=150°C	5	5.8	6.5	V	
Collector-emitter saturation voltage	V _{CE(sat)}		15		150	Tj=25°C Tj=150°C	1.5	1.85	2.5	V	
Collector-emitter cut-off current incl. Diode	I _{CES}		0	1200		Tj=25°C Tj=150°C			0.04	mA	
Gate-emitter leakage current	I _{GES}		20	0		Tj=25°C Tj=150°C			700	nA	
Integrated Gate resistor	R _{gint}					1)=100 0		5		Ω	
Turn-on delay time	t _{d(on)}					Tj=25°C Tj=150°C		213 229			
Rise time	tr	1				Tj=25°C Tj=150°C		35 44		1	
Turn-off delay time	t _{d(off)}	Rqoff=4 Ω				Tj=25°C Tj=150°C		326 410		ns	
Fall time	t _f	Rgon=4 Ω Rgon=4 Ω	0	±15	600	150	Tj=25°C		68 104		-
Turn-on energy loss per pulse	Eon	-				Tj=150°C Tj=25°C		12.68			
Turn-off energy loss per pulse	E _{off}					Tj=150°C Tj=25°C		18.80 8.07		mWs	
Input capacitance	C _{ies}					Tj=150°C		12.85 8800			
Output capacitance	C _{oss}	f=1MHz	0	25		Tj=25°C		580		pF	
Reverse transfer capacitance	C _{rss}	-						470		-	
Gate charge	Q _{Gate}	Vcc=960V	±15		150	Tj=25°C		750		nC	
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease						0.30			
Thermal resistance chip to case per chip	R _{thJC}	thickness≤50um λ = 1 W/mK							0.20		K/W
	I									l	
Inverter Diode		r	1	<u>т</u>	- <u>r</u>	Ti-25°C	1 2	1.04	2.5	1	
Diode forward voltage	V _F				150	Tj=25°C Tj=150°C	1.3	1.94 1.98	2.5	V	
Peak reverse recovery current	I _{RRM}					Tj=25°C Tj=150°C		143 168		A	
Reverse recovery time	t _{rr}					Tj=25°C Tj=150°C		287 465		ns	
Reverse recovered charge	Q _{rr}	Rgon=4 Ω	±15	600	150	Tj=25°C Tj=150°C		15.56 29.16		μC	
Peak rate of fall of recovery current	di(rec)max /dt	¢				Tj=25°C Tj=150°C		3267 1615		A/µs	
Reverse recovered energy	Erec					Tj=25°C Tj=150°C		5.71 10.81		mWs	
Thermal resistance chip to heatsink per chip	R _{thJH}	Thermal grease						0.50		IZ AAI	
Thermal resistance chip to case per chip	R _{thJC}	thickness≤50um λ = 1 W/mK	1					0.33		K/W	

preliminary datasheet

Output Inverter

 V_{GE} from 7 V to 17 V in steps of 1 V

Figure 3 Ou Typical transfer characteristics $I_{c} = f(V_{GE})$

 Figure 4
 Output inverter FR

 Typical diode forward current as a function of forward voltage

 $I_F = f(V_F)$

preliminary datasheet

Output inverter IGBT

Output Inverter

Figure 6

What all inductive load at		
$T_j =$	25/150	°C
V _{CE} =	600	V
$V_{GE} =$	±15	V
I _C =	150	А

1	20/100	-
V _{CE} =	600	V
V _{GE} =	±15	V
c =	150	А

Typical reverse recovery energy loss as a function of gate resistor

 $E_{rec} = f(R_G)$

Figure 8

V _{CE} =	600	V
$V_{GE} =$	±15	V
$I_{\rm C} =$	150	А

 $R_{gon} =$

4

Ω

preliminary datasheet

Output Inverter

With an inductive load at

$T_j =$	150	°C
$V_{CE} =$	600	V
$V_{GE} =$	±15	V
$R_{gon} =$	4	Ω
$R_{goff} =$	4	Ω

Figure 11

Typical reverse recovery time as a function of collector current

Figure 10 Typical switching times as a

function of gate resistor

With an inductive load at

$T_j =$	150	°C
V _{CE} =	600	V
V _{GE} =	±15	V
I _C =	150	А

±15

 $V_{GE} =$

V

Figure 12

Typical reverse recovery time as a

function of IGBT turn on gate resistor

preliminary datasheet

Output Inverter

Figure 13

Typical reverse recovery charge as a

function of collector current

 $Q_{rr} = f(I_C)$

Figure 15

Typical reverse recovery current as a

function of collector current

Figure 14

Output inverter FRED

Typical reverse recovery charge as a

function of IGBT turn on gate resistor

 $Q_{rr} = f(R_{gon})$

Figure 16 Typical reverse recovery current as a

function of IGBT turn on gate resistor

 $I_{RRM} = f(R_{gon})$

Output inverter FRED

$V_R =$	600	V
$I_F =$	150	Α
$V_{GE} =$	±15	V

preliminary datasheet

Output Inverter

Figure 19

IGBT transient thermal impedance

IGBT thermal model values

R (C/W)	Tau (s)
0.03	4.8E+00
0.06	1.1E+00
0.10	1.8E-01
0.09	3.7E-02
0.01	3.8E-03
0.01	3.9E-04

Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor $dI_0/dt, dI_{rec}/dt = f(R_{gon})$

Figure 20

 $V_{GE} =$

FRED transient thermal impedance

±15

V

as a function of pulse width

 $R_{thJH} =$ 0.50

FRED thermal model values

K/W

R (C/W)	Tau (s)
0.03	1.0E+01
0.10	1.4E+00
0.12	1.8E-01
0.19	3.3E-02
0.03	4.7E-03
0.03	4.2E-04

preliminary datasheet

 $T_h (^{\circ} C)$

200

Output Inverter

 $T_h (^{o}C)$

200

preliminary datasheet

Output Inverter

lc

preliminary datasheet

U_{ce3%}

3.8

Output inverter IGBT

4

3.6

Switching Definitions Output Inverter

Output inverter IGBT Figure 1 Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff Turn-on Switching Waveforms & definition of tdon, tEon $(t_{Eoff} = integrating time for E_{off})$ (t_{Eon} = integrating time for E_{on}) 140 240 120 Uce 200 100 ₩U_{ce 90%} 160 U_{ge 90%} 80 Uce lc % 120 60 Uge % t_{Eoff} 40 80 t_{don} 20 I_{c 1%} 40 Ic_{10%} 0 Uge_{10%} Uae 0 -20 t_{Eon} -40 -40 -0.2 0 0.2 0.6 0.8 0.4 time (us) 1 2.6 2.8 3 3.2 time(us) 3.4 $V_{GE}(0\%) =$ $V_{GE}(0\%) =$ -15 V -15 V V_{GE} (100%) = V V_{GE} (100%) = V 15 15 V_C (100%) = V_C (100%) = 600 V 600 V $I_{C}(100\%) =$ I_C (100%) = 149 А 149 А 0.23 0 41 $t_{don} =$ μs t_{doff} = μs 0.70 0.61 $t_{Eoff} =$ us $t_{Eon} =$ us Figure 3

Figure 4 Turn-on Switching Waveforms & definition of t_r

140 120 Uce Ic 100 2 80

Turn-off Switching Waveforms & definition of t_f

preliminary datasheet

Switching Definitions Output Inverter

preliminary datasheet

Switching Definitions Output Inverter

Package Outline and Pinout

PRODUCT STATUS DEFINITIONS

Datasheet Status	Product Status	Definition
Target	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.
Final	Full Production	This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by Vincotech manufacturer:

Other Similar products are found below :

 F3L100R07W2E3_B11
 F3L15R12W2H3_B27
 F3L400R07ME4_B22
 F3L400R12PT4_B26
 F4-100R12KS4
 F4-50R07W2H3_B51
 F4

 75R12KS4_B11
 FB15R06W1E3
 FB20R06W1E3_B11
 FD1000R33HE3-K
 FD300R06KE3
 FD300R12KE3
 FD300R12KS4_B5

 FD400R12KE3
 FD400R33KF2C-K
 FD401R17KF6C_B2
 FD-DF80R12W1H3_B52
 FF100R12KS4
 FF1200R17KE3_B2
 FF150R12KE3G

 FF200R06KE3
 FF200R06YE3
 FF200R12KT3
 FF200R12KT3_E
 FF200R12KT4
 FF200R17KE3
 FF300R12KE4_E

 FF300R12KS4HOSA1
 FF300R12ME4_B11
 FF300R12MS4
 FF300R12MS4
 FF300R12ME4_F4
 FF450R17IE4
 FF600R12IE4V

 FF600R12IP4V
 FF800R17KP4_B2
 FF900R12IE4V
 MIXA30W1200TED
 MIXA450PF1200TSF
 FP06R12W1T4_B3
 FP100R07N3E4

 FP100R07N3E4_B11
 FP10R12W1T4_B11
 FP10R12YT3
 FP10R12YT3_B4
 FP150R07N3E4
 FP15R12KT3

 FP15R12W2T4
 F
 FF150R12W1T4_B11
 FF10R12YT3
 FP10R12YT3_B4
 FP150R07N3E4
 FP15R12KT3