

Maximum Ratings

Parameter	Symbol	Condition	Value	Unit
Inverter Transistor				
Collector-emitter break down voltage	$\mathrm{V}_{\text {CE }}$		1200	V
DC collector current	I_{C}	$\begin{array}{ll}\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j}} \max & \mathrm{T}_{\mathrm{h}}=80^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{c}}=80^{\circ} \mathrm{C}\end{array}$	$\begin{aligned} & 134 \\ & 150 \end{aligned}$	A
Repetitive peak collector current	$I_{\text {cpulse }}$	t_{p} limited by $\mathrm{T}_{\mathrm{j}} \mathrm{max}$	450	A
Power dissipation per IGBT	$\mathrm{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j}} \max$ $\mathrm{T}_{\mathrm{h}}=80^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{c}}=80^{\circ} \mathrm{C}$	$\begin{aligned} & 313 \\ & 475 \end{aligned}$	W
Gate-emitter peak voltage	V_{GE}		± 20	V
Short circuit ratings	$\begin{aligned} & \mathrm{t}_{\mathrm{sc}} \\ & \mathrm{v}_{\mathrm{cc}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}} \leq 150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10 \\ 800 \\ \hline \end{gathered}$	$\begin{gathered} \mu \mathrm{s} \\ \mathrm{~V} \end{gathered}$
Maximum Junction Temperature	T_{j} max		175	${ }^{\circ} \mathrm{C}$

Inverter Diode

Peak Repetitive Reverse Voltage	$V_{\text {RRM }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1200	V
DC forward current	$I_{\text {F }}$	$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j}} \max$	$\begin{aligned} & \mathrm{T}_{\mathrm{h}}=80^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{c}}=80^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 110 \\ & 145 \end{aligned}$	A
Repetitive peak forward current	$\mathrm{I}_{\text {FRM }}$	t_{p} limited by $\mathrm{T}_{\mathrm{j}} \mathrm{max}$		300	A
Power dissipation per Diode	$\mathrm{P}_{\text {tot }}$	$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j}} \mathrm{max}$	$\begin{aligned} & \mathrm{T}_{\mathrm{h}}=80^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{c}}=80^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 189 \\ & 287 \\ & \hline \end{aligned}$	W
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{j}} \mathrm{max}$			175	${ }^{\circ} \mathrm{C}$

Thermal Properties

| Storage temperature | $\mathrm{T}_{\text {stg }}$ | | $-40 \ldots+125$ |
| :--- | :---: | :---: | :---: | :---: |
| Operation temperature under switching condition | $\mathrm{T}_{\text {op }}$ | | ${ }^{\circ} \mathrm{C}$ |

Maximum Ratings

$\mathrm{Tj}=25^{\circ} \mathrm{C}$, unless otherwise specified				
Parameter	Symbol	Condition	Value	Unit
Insulation Properties				
Insulation voltage	$V_{\text {is }}$	$\mathrm{t}=2 \mathrm{~s} \quad$ DC voltage	4000	V
Creepage distance			min 12,7	mm
Clearance			min 12,7	mm

Characteristic Values

Parameter	Symbol	Conditions				Value			Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}[\mathrm{~V}] \text { or } \\ & \mathrm{V}_{\mathrm{GS}}[\mathrm{~V}] \end{aligned}$	$\mathrm{V}_{\mathrm{r}}[\mathrm{V}]$ or $\mathrm{V}_{\mathrm{CE}}[\mathrm{V}]$ or V_{DS} [V]	$I_{c}[A]$ or $I_{F}[A]$ or $I_{D}[A]$	T_{j}	Min	Typ	Max	

Inverter Transistor

Gate emitter threshold voltage	$\mathrm{V}_{\mathrm{GE} \text { (th) }}$	VCE=VGE			0.006	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	5	5.8	6.5	V
Collector-emitter saturation voltage	$\mathrm{V}_{\text {CE(sat) }}$		15		150	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	1.5	1.85	2.5	V
Collector-emitter cut-off current incl. Diode	$I_{\text {ces }}$		0	1200		$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			0.04	mA
Gate-emitter leakage current	$\mathrm{I}_{\text {ges }}$		20	0		$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			700	nA
Integrated Gate resistor	$\mathrm{R}_{\text {gint }}$							5		Ω
Turn-on delay time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\begin{aligned} & \text { Rgoff=4 } \Omega \\ & \text { Rgon=4 } \Omega \end{aligned}$	± 15	600	150	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 213 \\ 229 \\ \hline \end{array}$		ns
Rise time	t_{r}					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 35 \\ & 44 \\ & \hline \end{aligned}$		
Turn-off delay time	$\mathrm{t}_{\text {d(off) }}$					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{array}{r} 326 \\ 410 \\ \hline \end{array}$		
Fall time	t_{f}					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 68 \\ 104 \\ \hline \end{gathered}$		
Turn-on energy loss per pulse	$E_{\text {on }}$					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 12.68 \\ & 18.80 \\ & \hline \end{aligned}$		mWs
Turn-off energy loss per pulse	$\mathrm{E}_{\text {off }}$					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} \hline 8.07 \\ 12.85 \\ \hline \end{gathered}$		
Input capacitance	$\mathrm{C}_{\text {ies }}$	$\mathrm{f}=1 \mathrm{MHz}$	0	25		$\mathrm{Tj}=25^{\circ} \mathrm{C}$		8800		pF
Output capacitance	$\mathrm{C}_{\text {oss }}$							580		
Reverse transfer capacitance	$\mathrm{C}_{\text {rss }}$							470		
Gate charge	$Q_{\text {Gate }}$	$\mathrm{Vcc}=960 \mathrm{~V}$	± 15		150	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		750		nC
Thermal resistance chip to heatsink per chip	$\mathrm{R}_{\text {thJH }}$	Thermal grease thickness 5 50um $\lambda=1 \mathrm{~W} / \mathrm{mK}$						0.30		K/W
Thermal resistance chip to case per chip	$\mathrm{R}_{\text {thJc }}$							0.20		

Inverter Diode

Diode forward voltage	V_{F}				150	$\begin{aligned} & \begin{array}{l} T \mathrm{j}=25^{\circ} \mathrm{C} \\ \mathrm{Tj}=150^{\circ} \mathrm{C} \end{array} \\ & \hline \end{aligned}$	1.3	$\begin{aligned} & \hline 1.94 \\ & 1.98 \\ & \hline \end{aligned}$	2.5	V
Peak reverse recovery current	$I_{\text {RRM }}$	Rgon=4 Ω	± 15	600	150	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 143 \\ & 168 \\ & \hline \end{aligned}$		A
Reverse recovery time	t_{rr}					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 287 \\ & 465 \\ & \hline \end{aligned}$		ns
Reverse recovered charge	$\mathrm{Q}_{\text {rr }}$					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 15.56 \\ & 29.16 \\ & \hline \end{aligned}$		$\mu \mathrm{C}$
Peak rate of fall of recovery current	$\begin{array}{\|c\|} \hline \begin{array}{c} \mathrm{di}(\mathrm{rec}) \max \\ / \mathrm{dt} \end{array} \\ \hline \end{array}$					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 3267 \\ & 1615 \\ & \hline \end{aligned}$		A/ $/ \mathrm{s}$
Reverse recovered energy	Erec					$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 5.71 \\ 10.81 \\ \hline \end{gathered}$		mWs
Thermal resistance chip to heatsink per chip	$\mathrm{R}_{\text {thJH }}$	Thermal grease thickness ≤ 50 um $\lambda=1 \mathrm{~W} / \mathrm{mK}$						0.50		K/W
Thermal resistance chip to case per chip	$\mathrm{R}_{\text {thJc }}$							0.33		

Output Inverter

At

$\mathrm{t}_{\mathrm{p}}=$	250	$\mu \mathrm{~s}$
$\mathrm{~T}_{\mathrm{j}}=$	25	${ }^{\circ} \mathrm{C}$
V_{GE} from	7 V to 17 V in steps of 1 V	

Figure 3 Output inverter IGBT
 Typical transfer characteristics

$\mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{GE}}\right)$

[^0]

Typical output characteristics
$\mathrm{I}_{\mathrm{C}}=\mathrm{f}\left(\mathrm{V}_{\mathrm{CE}}\right)$

At

$t_{p}=$	250	$\mu \mathrm{~s}$
$T_{j}=$	150	${ }^{\circ} \mathrm{C}$

$\mathrm{V}_{\text {GE }}$ from $\quad 7 \mathrm{~V}$ to 17 V in steps of 1 V

Typical diode forward current as a function of forward voltage

At
$t_{p}=\quad 250 \quad \mu \mathrm{~s}$

Output Inverter

With an inductive load at

$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{R}_{\text {gon }}=$	4	Ω
$\mathrm{R}_{\text {goff }}=$	4	Ω

With an inductive load at		
$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{R}_{\text {gon }}=$	4	Ω

Figure $6 \quad$ Output inverter IGBT
Typical switching energy losses
as a function of gate resistor

With an inductive load at
$\mathrm{T}_{\mathrm{i}}=\quad 25 / 150 \quad{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}$
$\mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=\quad 150 \quad \mathrm{~A}$

Figure 8

Output inverter IGBT
Typical reverse recovery energy loss
as a function of gate resistor
$E_{\text {rec }}=f\left(R_{G}\right)$

With an inductive load at

$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{I}_{\mathrm{C}}=$	150	A

Output Inverter

With an inductive load at

$\mathrm{T}_{\mathrm{j}}=$	150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{R}_{\text {gon }}=$	4	Ω
$\mathrm{R}_{\text {goff }}=$	4	Ω

Figure 11

Output inverter FRED
Typical reverse recovery time as a
function of collector current

At		
$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{R}_{\text {gon }}=$	4	Ω

Figure 10
Output inverter IGBT
Typical switching times as a
function of gate resistor
$t=f\left(R_{G}\right)$

With an inductive load at

$\mathrm{T}_{\mathrm{j}}=$	150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CE }}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{I}_{\mathrm{C}}=$	150	A

Figure 12

Typical reverse recovery time as a function of IGBT turn on gate resistor
$\mathrm{t}_{\mathrm{rf}}=\mathrm{f}\left(\mathrm{R}_{\text {gon }}\right)$

At		
$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{R}}=$	600	V
$\mathrm{I}_{\mathrm{F}}=$	150	A
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V

Output Inverter

Figure 13
 Typical reverse recovery charge as a

function of collector current
$Q_{r r}=f\left(l_{C}\right)$

$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{R}_{\text {gon }}=$	4	Ω

Figure 15

Output inverter FRED
Typical reverse recovery current as a
function of collector current
$I_{\text {RRM }}=f\left(I_{C}\right)$

At		
$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{R}_{\text {gon }}=$	4	Ω

Figure 14
Output inverter FRED
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
$Q_{\text {rf }}=f\left(R_{\text {gon }}\right)$

At

$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{R}}=$	600	V
$\mathrm{I}_{\mathrm{F}}=$	150	A
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V

Figure 16

Output inverter FRED
Typical reverse recovery current as a
function of IGBT turn on gate resistor
$I_{\text {RRM }}=f\left(R_{\text {gon }}\right)$

At		
$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{R}}=$	600	V
$\mathrm{I}_{\mathrm{F}}=$	150	A
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V

Output Inverter

Typical rate of fall of forward and reverse recovery current as a

function of collector current

$\mathrm{dl}_{0} / \mathrm{dt}^{2}, \mathrm{dl}_{\text {rec }} / \mathrm{dt}=\mathrm{f}(\mathrm{Ic})$

At		
$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CE}}=$	600	V
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V
$\mathrm{R}_{\text {gon }}=$	4	Ω

Figure 19

IGBT transient thermal impedance
as a function of pulse width

At	
$D=$	t_{p} / T
RthJH $=$	0.30

K/W

IGBT thermal model values

$R(C / W)$	Tau (s)
0.03	$4.8 \mathrm{E}+00$
0.06	$1.1 \mathrm{E}+00$
0.10	$1.8 \mathrm{E}-01$
0.09	$3.7 \mathrm{E}-02$
0.01	$3.8 \mathrm{E}-03$
0.01	$3.9 \mathrm{E}-04$

Figure 18
Output inverter FRED
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
$\mathrm{dl}_{0} / \mathrm{dt}^{2}, \mathrm{dl}_{\text {rec }} / \mathrm{dt}=\mathrm{f}\left(\mathrm{R}_{\mathrm{gon}}\right)$

At

$\mathrm{T}_{\mathrm{j}}=$	$25 / 150$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{R}}=$	600	V
$\mathrm{I}_{\mathrm{F}}=$	150	A
$\mathrm{~V}_{\mathrm{GE}}=$	± 15	V

Figure 20

Output inverter FRED
FRED transient thermal impedance
as a function of pulse width
$Z_{\text {thJH }}=f\left(t_{p}\right)$

FRED thermal model values

$R(C / W)$	Tau (s)
0.03	$1.0 \mathrm{E}+01$
0.10	$1.4 \mathrm{E}+00$
0.12	$1.8 \mathrm{E}-01$
0.19	$3.3 \mathrm{E}-02$
0.03	$4.7 \mathrm{E}-03$
0.03	$4.2 \mathrm{E}-04$

Output Inverter

Figure 21
 Output inverter IGBT
 \section*{Power dissipation as a}

function of heatsink temperature
$P_{\text {tot }}=f\left(T_{h}\right)$

At
$\mathrm{T}_{\mathrm{j}}=\quad 175 \quad{ }^{\circ} \mathrm{C} \quad$ single heating

Figure 23

Output inverter FRED
Power dissipation as a
function of heatsink temperature
$\mathrm{P}_{\text {tot }}=\mathrm{f}\left(\mathrm{T}_{\mathrm{h}}\right)$

At
$\mathrm{T}_{\mathrm{j}}=$
$\mathrm{T}_{\mathrm{j}}=\quad 175 \quad{ }^{\circ} \mathrm{C}$
__ overall heating

Output Inverter

At
$D=\quad$ single pulse
Th $=80 \quad{ }^{\circ} \mathrm{C}$
$V_{G E}= \pm 15 \quad V$
$\mathrm{T}_{\mathrm{j}}=\quad \mathrm{T}_{\mathrm{jmax}} \quad{ }^{\circ} \mathrm{C}$

Gate voltage vs Gate charge

At
$\begin{array}{lll}\mathrm{I}_{\mathrm{C}}= & 150 & \mathrm{~A}\end{array}$

V23990-P680-F-PM

preliminary datasheet

Switching Definitions Output Inverter

General conditions

Figure 3
Turn-off Switching Waveforms \& definition of t_{f}

Figure 2 Output inverter IGBT
Turn-on Switching Waveforms \& definition of tdon, tEon ($\mathrm{t}_{\text {Eon }}=$ integrating time for E_{on})

Figure 4
Output inverter IGBT
Turn-on Switching Waveforms \& definition of t_{r}

Switching Definitions Output Inverter

Turn-off Switching Waveforms \& definition of $\mathrm{t}_{\text {Eoff }}$

Figure 7

Gate voltage vs Gate charge (measured)

Figure 6
Output inverter IGBT
Turn-on Switching Waveforms \& definition of $\mathrm{t}_{\text {Eon }}$

Figure 8

Output inverter IGBT
Turn-off Switching Waveforms \& definition of t_{rr}

preliminary datasheet

Switching Definitions Output Inverter

Turn-on Switching Waveforms \& definition of t_{Qr}

Figure 10

Output inverter FRED
Turn-on Switching Waveforms \& definition of $\mathrm{t}_{\text {Erec }}$
($\mathrm{t}_{\text {Erec }}=$ integrating time for $\mathrm{E}_{\text {rec }}$)

Package Outline and Pinout

PRODUCT STATUS DEFINITIONS

Datasheet Status	Product Status	Definition
Target	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.
Final	Full Production	This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff.

DISCLAIMER

The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by Vincotech manufacturer:
Other Similar products are found below :
F3L100R07W2E3_B11 F3L15R12W2H3_B27 F3L400R07ME4_B22 F3L400R12PT4_B26 F4-100R12KS4 F4-50R07W2H3_B51 F475R12KS4_B11 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD300R06KE3 FD300R12KE3 FD300R12KS4_B5 FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF100R12KS4 FF1200R17KE3_B2 FF150R12KE3G FF200R06KE3 FF200R06YE3 FF200R12KT3 FF200R12KT3_E FF200R12KT4 FF200R17KE3 FF300R06KE3_B2 FF300R12KE4_E FF300R12KS4HOSA1 FF300R12ME4_B11 FF300R12MS4 FF300R17ME4 FF450R12ME4P FF450R17IE4 FF600R12IE4V FF600R12IP4V FF800R17KP4_B2 FF900R12IE4V MIXA30W1200TED MIXA450PF1200TSF FP06R12W1T4_B3 FP100R07N3E4 FP100R07N3E4_B11 FP10R06W1E3_B11 FP10R12W1T4_B11 FP10R12YT3 FP10R12YT3_B4 FP150R07N3E4 FP15R12KT3 FP15R12W2T4

[^0]: At
 $\mathrm{t}_{\mathrm{p}}=\quad 250 \quad \mu \mathrm{~s}$
 $\mathrm{V}_{\mathrm{CE}}=0 \quad \mathrm{~V}$

