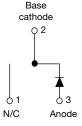


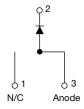
VS-15ETH06SPbF, VS-15ETH06-1PbF

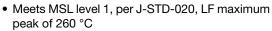
Vishay Semiconductors

RoHS

HALOGEN


FREE


Hyperfast Rectifier, 15 A FRED Pt®


VS-15ETH06SPbF

VS-15ETH06-1PbF

PRODUCT SUMMARY	
t _{rr} (typical)	22 ns
I _{F(AV)}	15 A
V_{R}	600 V
Package	TO-263AB (D ² PAK), TO-262AA
Circuit configuration	Single diode

FEATURES

- · Hyperfast recovery time
- Low forward voltage drop
- Low leakage current
- 175 °C operating junction temperature
- Single die center tap module

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

State of the art hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC boost stage in the AC/DC section of SMPS, inverters or as freewheeling diodes.

The extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS			
Peak repetitive reverse voltage	V_{RRM}		600	V			
Average rectified forward current	I _{F(AV)}	T _C = 140 °C	15				
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	120	Α			
Peak repetitive forward current	I _{FM}		30				
Operating junction and storage temperatures	T _J , T _{Stg}		-65 to +175	°C			

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	600	-	-	
Forward voltage	V _F	I _F = 15 A	-	1.8	2.2	V
Forward voitage	v _F	I _F = 15 A, T _J = 150 °C	-	1.3	1.6	
Reverse leakage current		$V_R = V_R$ rated	-	0.2	50	
neverse leakage current	I _R	$T_J = 150 ^{\circ}\text{C}, V_R = V_R \text{rated}$	-	30	500	μA
Junction capacitance	C _T	V _R = 600 V	-	20	-	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nH

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS (T _C = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS
		$I_F = 1 A, dI_F/dt = 10$	$00 \text{ A/}\mu\text{s}, \text{ V}_{\text{R}} = 30 \text{ V}$	ı	22	30	
Payaraa raaayan tima		$I_F = 15 \text{ A, } dI_F/dt = 100$	100 A/μs, V _R = 30 V	-	28	35	no
Reverse recovery time	t _{rr}	T _J = 25 °C		-	29	-	ns -
		T _J = 125 °C	$I_F = 15 \text{ A}$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$ $V_B = 390 \text{ V}$	-	75	-	
Deals were your assument	I _{RRM}	T _J = 25 °C		-	3.5	-	A
Peak recovery current		T _J = 125 °C		-	7	-	
Povorno rocovery charge	0	T _J = 25 °C		-	57	-	
Reverse recovery charge	Q _{rr}	T _J = 125 °C		-	300	-	μC
Reverse recovery time	t _{rr}		I _F = 15 A	-	51	-	ns
Peak recovery current	I _{RRM}	T _J = 125 °C	dl _F /dt = 800 A/μs	-	20	-	Α
Reverse recovery charge	Q _{rr}		V _R = 390 V	-	580	-	nC

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	+175	°C
Thermal resistance, junction to case per leg	R _{thJC}		-	1.0	1.3	
Thermal resistance, junction to ambient per leg	R _{thJA}	Typical socket mount	-	-	70	°C/W
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-	
Waight			-	2.0	-	g
Weight			-	0.07	-	oz.
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)
Mades de tra		Case style TO-263AB (D ² PAK) 15ETH0		H06S		
Marking device		Case style TO-262AA	15ETH06-1			

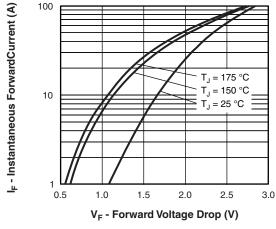


Fig. 1 - Typical Forward Voltage Drop Characteristics

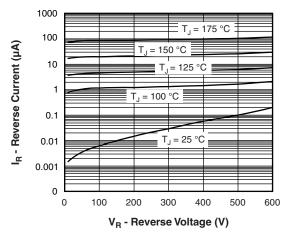


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Vishay Semiconductors

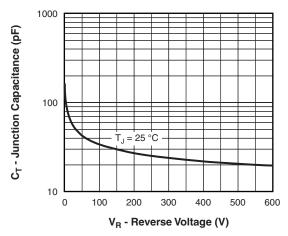


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

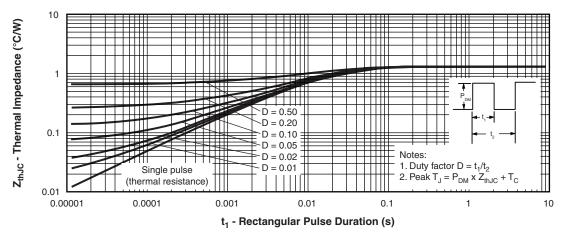


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

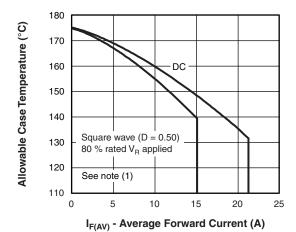


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

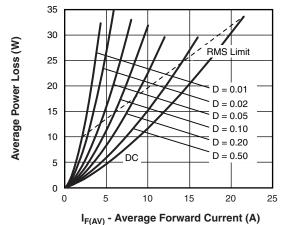


Fig. 6 - Forward Power Loss Characteristics

Note

(1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{th,JC}$; $Pd = Forward power loss = I_{F(AV)} \times V_{FM} at (I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 - D)$; I_R at $V_{R1} = Rated V_R$

VS-15ETH06SPbF, VS-15ETH06-1PbF

Vishay Semiconductors

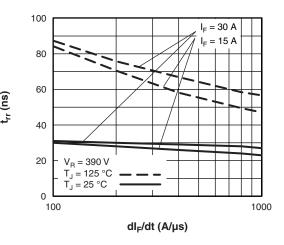


Fig. 7 - Typical Reverse Recovery vs. dl_F/dt

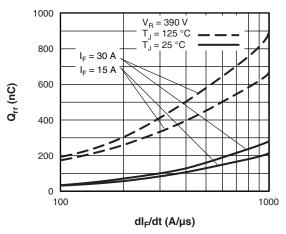
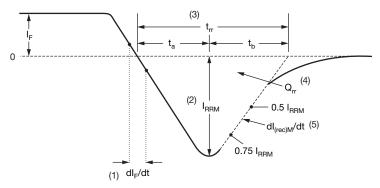
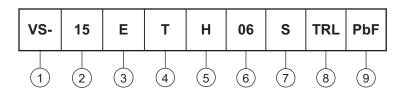



Fig. 8 - Typical Stored Charge vs. dl_F/dt

- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) $\rm t_{rr}$ reverse recovery time measured from zero crossing point of negative going $\rm I_{r}$ to point where a line passing through 0.75 $\rm I_{RRM}$ and 0.50 $\rm I_{RRM}$ extrapolated to zero current.
- (4) Q_{rr} area under curve defined by t_{rr} and I_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) dl_{(rec)M}/dt - peak rate of change of current during t_b portion of t_{rr}


Fig. 9 - Reverse Recovery Waveform and Definitions

VS-15ETH06SPbF, VS-15ETH06-1PbF

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating (15 A)

3 - E = single diode

4 - $T = TO-220, D^2PAK$

5 - H = hyperfast rectifier

Voltage rating (06 = 600 V)

7 - • S = D²PAK

• -1 = TO-262

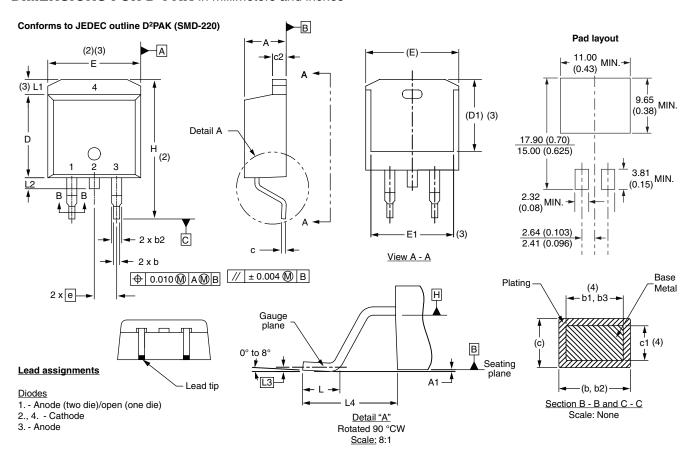
None = tube (50 pieces)

• TRL = tape and reel (left oriented, for D²PAK package)

• TRR = tape and reel (right oriented, for D²PAK package)

9 - PbF = lead (Pb)-free

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER REEL	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-15ETH06SPBF	50	1000	Antistatic plastic tubes			
VS-15ETH06TRRSPBF	800	800	13" diameter plastic tape and reel			
VS-15ETH06STRLPBF	800	800	13" diameter plastic tape and reel			
VS-15ETH06-1PBF	50	1000	Antistatic plastic tubes			


LINKS TO RELATED DOCUMENTS				
Dimensions TO-263AB (D ² PAK) <u>www.vishay.com/doc?95046</u>				
Differsions	TO-262AA	www.vishay.com/doc?95419		
Part marking information		www.vishay.com/doc?95008		
Packaging information		www.vishay.com/doc?95032		

Vishay High Power Products

D²PAK, TO-262

DIMENSIONS FOR D²PAK in millimeters and inches

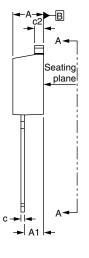
0.44501	MILLIM	MILLIMETERS		INCHES	
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190	
A1	0.00	0.254	0.000	0.010	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2

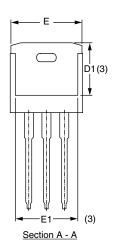
SYMBOL	MILLIM	ETERS	INC	HES	NOTES
STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- $^{(3)}\,$ Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch

(7) Outline conforms to JEDEC outline TO-263AB

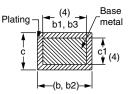

Vishay High Power Products


D²PAK, TO-262

DIMENSIONS FOR TO-262 in millimeters and inches

⊕ 0.010**⋒**|A**⋒**|B

Lead assignments



<u>Diodes</u>

-3 x b2 --3 x b

> 1. - Anode (two die)/open (one die) 2., 4. - Cathode

3. - Anode

Section B - B and C - C Scale: None

OVMDOL	MILLIM	ETERS	ERS INCHES		NOTES
SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
С	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
Е	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54	BSC	0.100) BSC	
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.56	3.71	0.140	0.146	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches

(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Vishay manufacturer:

Other Similar products are found below:

M39006/22-0577H M39006/22-0608H/96 Y00892K49000BR13L VS-12CWQ10FNPBF M8340109M6801GGD03 VS-MBRB1545CTPBF

1KAB100E CCF5020K0FKR36 CCF5010K0FKE36 VSMF4720-GS08 001789X LTO050FR0500JTE3 LVR10R0200FE03

CRCW12063K01FKEA CRCW12063K30FKEAHP 009923A CRHV1206AF80M0FKET CS6600552K000B8768 M39003/01-2289

M39003/01-2784 CW0106K000JE73 672D826H075EK5C CWR06JC105KC CWR06NC475JC MAL202118471E3 MAL213660221E3

MAL213666102E3 MAL215058102E3 MAL219699001E3 PTF56100K00QYEK PTN0805H1502BBTR1K RCL12252K20JNEG

RCWL1210R130JNEA RE65G2211C02 RH005220R0FE02 RH005330R0FC02 RH010R0500FC02 132B20103 RH0501R650FC02

RH0507R000FC02 RH1007R000FJ01 RH2503R500FE01 RH254R220FS03 RH-50-40R2-1%-C02 134D336X9075C6 132B00301

DG9426EDQ-T1-GE3 138D685X0075C2 RN55C1242FB14 RN55D3010FB14