TransZorb ${ }^{\circledR}$ Transient Voltage Suppressors

Case Style 1.5KE

FEATURES

- Glass passivated chip junction
- Available in uni-directional and bi-directional
- 1500 W peak pulse power capability with a 10/1000 $\mu \mathrm{s}$ waveform, repetitive rate (duty cycle): 0.01 \%
- Excellent clamping capability
- Very fast response time
- Low incremental surge resistance
- Solder dip $275^{\circ} \mathrm{C}$ max. 10 s, per JESD 22-B106
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

PRIMARY CHARACTERISTICS	
V_{WM}	5.0 V to 18 V
$\mathrm{~V}_{\mathrm{BR}}$ (uni-directional)	6.0 V to 21.2 V
$\mathrm{~V}_{\mathrm{BR}}$ (bi-directional)	9.2 V to 21.2 V
$\mathrm{P}_{\mathrm{PPM}}$	1500 W
P_{D}	6.5 W
$\mathrm{I}_{\mathrm{FSM}}$	200 A
$\mathrm{~T}_{\mathrm{J}}$ max.	$175^{\circ} \mathrm{C}$
Polarity	Uni-directional, bi-directional
Package	1.5 KE

DEVICES FOR BI-DIRECTION APPLICATIONS

For bi-directional types, use C suffix (e.g. ICTE18C). Electrical characteristics apply in both directions.

TYPICAL APPLICATIONS

Use in sensitive electronics protection against voltage transients induced by inductive load switching and lighting on ICs, MOSFET, signal lines of sensor units for consumer, computer, industrial, and telecommunication.

MECHANICAL DATA

Case: 1.5 KE , molded epoxy body over passivated junction Molding compound meets UL 94 V-0 flammability rating Base P/N-E3 - RoHS-compliant and commercial grade Base P/NHE3_X - RoHS-compliant and AEC-Q101 qualified ("X" denotes revision code e.g. A, B, ...)
Terminals: matte tin plated leads, solderable per J-STD-002 and JESD 22-B102
E3 suffix meets JESD 201 class 1A whisker test, HE3 suffix meets JESD 201 class 2 whisker test
Polarity: for uni-directional types the color band denotes cathode end, no marking on bi-directional types

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)			
PARAMETER	SYMBOL	LIMIT	UNIT
Peak pulse power dissipation with a 10/1000 μ s waveform ${ }^{(1)}$ (fig. 1)	PPPM	1500	W
Peak pulse current with a $10 / 1000 \mu \mathrm{~s}$ waveform ${ }^{(1)}$ (fig. 3)	$\mathrm{I}_{\text {PPM }}$	See next table	A
Power dissipation on infinite heatsink at $\mathrm{T}_{\mathrm{L}}=75^{\circ} \mathrm{C}$ (fig. 8)	P_{D}	6.5	W
Peak forward surge current $8.3 \mathrm{~ms} \mathrm{single} \mathrm{half} \mathrm{sine-wave} \mathrm{uni-directional} \mathrm{only}{ }^{(2)}$	$\mathrm{I}_{\text {FSM }}$	200	A
Maximum instantaneous forward voltage at 100 A for uni-directional only	V_{F}	3.5	V
Operating junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	-55 to +175	${ }^{\circ} \mathrm{C}$

Notes

(1) Non-repetitive current pulse, per fig. 3 and derated above $T_{A}=25^{\circ} \mathrm{C}$ per fig. 2
(2) 8.3 ms single half sine-wave, duty cycle $=4$ pulses per minute maximum

ICTE5 thru ICTE18C, 1N6373 thru 1N6386

$\begin{aligned} & \text { JEDEC® } \\ & \text { TYPE } \end{aligned}$ NUMBER	GENERAL SEMICONDUCTOR PART NUMBER	$\begin{aligned} & \text { STAND-OFF } \\ & \text { VOLTAGE } \\ & \mathbf{V}_{W M} \\ & (\mathrm{~V}) \end{aligned}$	BREAKDOWN VOLTAGE $V_{B R}$ AT 1.0 mA (V) MIN.	MAXIMUM REVERSE LEAKAGE AT V_{wm} $I_{D}(\mu \mathrm{~A})$	MAXIMUM CLAMPING VOLTAGE AT $\mathrm{IPP}_{\mathrm{P}}=1.0 \mathrm{~A}$ V_{C} (V)	MAXIMUM CLAMPING VOLTAGE AT $I_{P P}=10 \mathrm{~A}$ $V_{c}(V)$	MAXIMUM PEAK PULSE CURRENT IPP (A)
UNI-DIRECTIONAL TYPES							
1N6373 ${ }^{(2)}$	ICTE5 ${ }^{(2)}$	5.0	6.0	300	7.1	7.5	160
1N6374	ICTE8	8.0	9.4	25.0	11.3	11.5	100
1N6375	ICTE10	10.0	11.7	2.0	13.7	14.1	90
1N6376	ICTE12	12.0	14.1	2.0	16.1	16.5	70
1N6377	ICTE15	15.0	17.6	2.0	20.1	20.6	60
1N6378	ICTE18	18.0	21.2	2.0	24.2	25.2	50
BI-DIRECTIONAL TYPES							
1N6382	ICTE8C	8.0	9.4	50	11.4	11.6	100
1N6383	ICTE10C	10.0	11.7	2.0	14.1	14.5	90
1N6384	ICTE12C	12.0	14.1	2.0	16.7	17.1	70
1N6385	ICTE15C	15.0	17.6	2.0	20.8	21.4	60
1N6386	ICTE18C	18.0	21.2	2.0	24.8	25.5	50

Notes

(1) "C" suffix indicates bi-directional
(2) ICTE5 and 1N6373 are not available as bi-directional
(3) Clamping factor: 1.33 at full rated power; 1.20 at 50% rated power; clamping factor: the ratio of the actual V_{C} (clamping voltage) to the V_{BR} (breakdown voltage) as measured on a specific device

ORDERING INFORMATION (Example)						
ICTE5-E3/54	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
ICTE5HE3_A/C ${ }^{(1)}$	0.968	54	1400	13" diameter paper tape and reel		

Note

(1) AEC-Q101 qualified

Fig. 1 - Peak Pulse Power Rating Curve

Fig. 2 - Pulse Power or Current vs. Initial Junction Temperature

Fig. 3 - Pulse Waveform

Fig. 4 - Typical Junction Capacitance Uni-Directional

Fig. 5 - Typical Junction Capacitance

Fig. 6 - Maximum Non-Repetitive Forward Surge Current Uni-Directional Only

ICTE5 thru ICTE18C, 1N6373 thru 1N6386

Fig. 7 - Typical Characteristics Clamping Voltage

Fig. 8 - Power Derating Curve

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)
Case Style 1.5KE

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 82350120560 82356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A 5KP15A

