
Vishay Semiconductors

Schottky Rectifier, 3.3 A

www.vishay.com

PRODUCT SUMMARY					
Package	DO-201AD (C-16)				
I _{F(AV)}	3.3 A				
V _R	90 V, 100 V				
V _F at I _F	See Electrical table				
I _{RM} max.	3.0 mA at 125 °C				
T _J max.	150 °C				
Diode variation	Single die				
E _{AS}	3.0 mJ				

FEATURES

- Low profile, axial leaded outline
- High frequency operation
- Very low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance

HALOGEN

FREE Available

- Guard ring for enhanced ruggedness and long term reliability
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified for commercial level
- Halogen-free according to IEC 61249-2-21 definition (-M3 only)

DESCRIPTION

The VS-31DQ... axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{F(AV)}	Rectangular waveform	3.3	A			
V _{RRM}		90/100	V			
I _{FSM}	t _p = 5 μs sine	210	A			
V _F	3 Apk, T _J = 25 °C	0.85	V			
TJ		- 40 to 150	°C			

VOLTAGE RATINGS								
PARAMETER	SYMBOL	VS-31DQ09	VS-31DQ09-M3	VS-31DQ10	VS-31DQ10-M3	UNITS		
Maximum DC reverse voltage	V _R							
Maximum working peak reverse voltage	V _{RWM}	90	90	100	100	V		

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDI	VALUES	UNITS			
Maximum average forward current See fig. 4	I _{F(AV)}	50 % duty cycle at T_L = 108 °C, rectangular waveform		3.3			
Maximum peak one cycle non-repetitive surge current		5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	210	A		
See fig. 6	IFSM	10 ms sine or 6 ms rect. pulse	V _{RRM} applied	34			
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 1 A, L = 6 mH		3.0	mJ		
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		0.5	А		

Revision: 19-Sep-11

Document Number: 93321

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

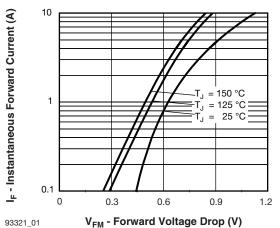
1

www.vishay.com

Vishay Semiconductors

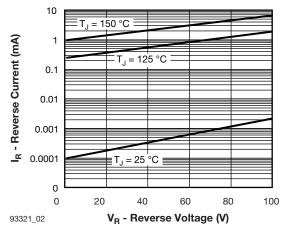
ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS	
	V _{FM} ⁽¹⁾	3 A	T.I = 25 °C	0.85	V	
Maximum forward voltage drop		6 A	1j=23 0	0.97		
See fig. 1		3 A	T 105 %O	0.69		
		6 A	T _J = 125 °C	0.80		
Maximum reverse leakage current	I _{BM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	1	mA	
See fig. 4	IRM ()	T _J = 125 °C	$v_{\rm R} = naleu v_{\rm R}$	3		
Typical junction capacitance	CT	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		110	pF	
Typical series inductance	L _S	Measured lead to lead 5 mm from package body 9.0			nH	
Maximum voltage rate of charge	dV/dt	Rated V _R 10 000 V/			V/µs	

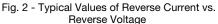
Note

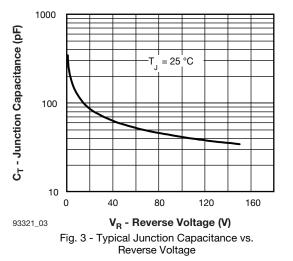

⁽¹⁾ Pulse width < 300 μ s, duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		- 40 to 150	°C		
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation Without cooling fin	80	°C/W		
Typical thermal resistance, junction to lead	R _{thJL}	DC operation	15	°C/W		
Approvimeto weight			1.2	g		
Approximate weight			0.042	oz.		
Marking device			31DQ09			
		Case style C-16	31DQ10			

Note


(1) $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink


Vishay Semiconductors



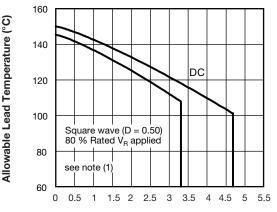

www.vishay.com

Fig. 1 - Maximum Forward Voltage Drop Characteristics

93321_04 **I_{F(AV)} - Average Forward Current (A)** Fig. 4 - Maximum Allowable Lead Temperature vs. Average Forward Current

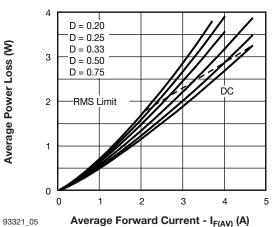
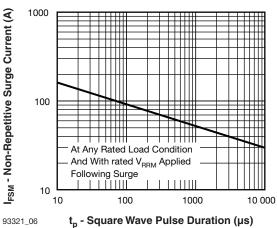



Fig. 5 - Forward Power Loss Characteristics

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJL}$;

Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at ($I_{F(AV)}/D$) (see fig. 6); Pd_{REV} = Inverse power loss = $V_{R1} \times I_R$ (1 - D); I_R at V_{R1} = 80 % rated V_R

Revision: 19-Sep-11

3

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

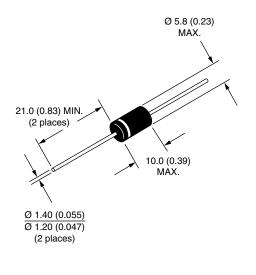
ORDERING INFORMATION TABLE

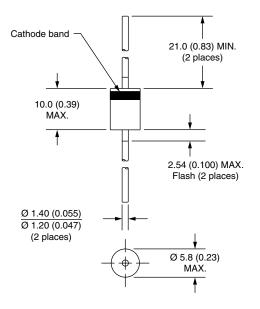
www.vishay.com

VISHA

Device code	VS-	31	D	Q	10	TR	-M3	
		2	3	4	5	6	7	I
	1 - 2 - 3 - 4 - 5 - 6 - 7 -	31 = D = 1 Q = 10 = • TR • No Envi	Current DO-201 Schottky Voltage = Tape ne = Bu ronment	iconduct t Rating, packag y Q ser ratings and ree lk packa tal digit ad (Pb)-	, 3.3 A e ries el packa	ge	complia	09 = 90 V 10 = 100 V
				, ,			•	d terminations lead (Pb)-fre

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-31DQ09	500	500	Bulk			
VS-31DQ09TR	1200	1200	Tape and reel			
VS-31DQ09-M3	500	500	Bulk			
VS-31DQ09TR-M3	1200	1200	Tape and reel			
VS-31DQ10	500	500	Bulk			
VS-31DQ10TR	1200	1200	Tape and reel			
VS-31DQ10-M3	500	500	Bulk			
VS-31DQ10TR-M3	1200	1200	Tape and reel			


LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95242				
Part marking information	www.vishay.com/doc?95304				
Packaging information	www.vishay.com/doc?95338				
SPICE model	www.vishay.com/doc?95300				



Axial DO-201AD (C-16)

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

CUS06(TE85L,Q,M) MA4E2039 D1FH3-5063 MBR0530L-TP MBR10100CT-BP MBR30H100MFST1G MMBD301M3T5G PMAD1103-LF PMAD1108-LF RB160M-50TR RB520S-30 RB551V-30 DD350N18K DZ435N40K DZ600N16K BAS16E6433HTMA1 BAS 3010S-02LRH E6327 BAT 54-02LRH E6327 IDL02G65C5XUMA1 NSR05F40QNXT5G NSVR05F40NXT5G JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SBAT54CWT1G SBM30-03-TR-E SBS818-TL-E SK32A-LTP SK33A-TP SK34A-TP SK34B-TP SMD1200PL-TP ACDBN160-HF SS3003CH-TL-E STPS30S45CW PDS3100Q-7 GA01SHT18 CRS10I30A(TE85L,QM MBR1240MFST1G MBRB30H30CT-1G BAS28E6433HTMA1 BAS 70-02L E6327 HSB123JTR-E JANTX1N5712-1 VS-STPS40L45CW-N3 DD350N12K SB007-03C-TB-E SB10015M-TL-E SB1003M3-TL-E SK110-LTP