

DATA SHEET 5063JD series (space miser) 0.25 to 0.40 W; 1% and 5% Metal film resistors

Product specification File under BCcomponents, BC08 2000 Aug 08

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%

DESCRIPTION

A homogeneous film of metal alloy is deposited on a high grade BALOX ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper are welded to the end-caps. The resistors are coated with a blue lacquer which provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "*MIL-STD-202E, method 215*", and "*IEC 60068-2-45*".

QUICK REFERENCE DATA

DESCRIPTION	VAI	LUE	
Resistance range	0.22 Ω to 10 M Ω ; see Table 1		
Resistance tolerance and series	±5%, (E24); ±1%, (E24/E96)		
Temperature coefficient	$\pm 100 \times 10^{-6}$ /K		
Operation mode	normal	long term	
Climatic category (LCT/UCT/days)	55/155/56	55/125/56	
Max. dissipation, P ₇₀	0.40 W	0.25 W	
Thermal resistance, R _{th}	200 °C/W		
Max. continuous operating voltage, Umax	200 V (DC or RMS)		
Noise $R \le 1 M\Omega$	max. 0.1 V/V		
Surface temperature	155 °C	125 °C	
Operating temperature range	−55 °C to +155 °C	–55 °C to +125 °C	
Max. resistance change at P_{70} for resistance range, $\Delta R/R$ max., after:			
1 000 h	0.50%	0.25%	
8000 h	1.0%	0.50%	
225000 h	-	1.5%	
Permissible voltage against ambient:			
1 minute	300 V		
continuous	75 V		
Stability (ΔR/R max.) after:			
load (1000 hours)	$\pm 0.50\% + 0.05~\Omega$	$\pm 0.25\% + 0.05 \ \Omega$	
climatic test	$\pm 1.0\% + 0.05 \ \Omega$		
resistance to soldering heat	$\pm 0.25\% + 0.05 \ \Omega$		
short time overload (400 V max.)	$\pm 0.25\% + 0.05 \ \Omega$		

www.DataSheet4U.com

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%

ORDERING INFORMATION

 Table 1
 Ordering code indicating resistor type and packaging

ТҮРЕ	TC (× 10 ⁻⁶ /K)	TOL. (%)	RESISTANCE RANGE	PART NUMBER	SPQ (units)
5063JD ±100		_	jumper ⁽¹⁾	5063JD0R000J12AFS	5000; tape & reel
		_	jumper ⁽¹⁾	5063JD0R000J18AFS	5000; ammopack
	+100	±5	0.22 to 0.91 Ω	5063JDxxxxxJ12AFS	5000; tape & reel
	1100	±5	0.22 to 0.91 Ω	5063JDxxxxxJ18AFS	5000; ammopack
		±1	1 Ω to 10 M Ω	5063JDxxxxxF12AF5	5000; tape & reel
		±1	1 Ω to 10 M Ω	5063JDxxxxxF18AF5	5000; ammopack

Note

1. A 0 Ω jumper is available with a maximum resistance R_{max} \leq 10 m Ω at 3 A.

Composition of the clear text code (NAFTA P/N)

- The resistors have an ordering code starting with 50
- The subsequent digits indicate the resistor type, temperature coefficient, ohmic value, tolerance and packaging; see Table 1
- The ohmic value is represented by 5-digits; see Table 2
- For temperature coefficient and tolerance, see Table 3.

Table 2 Examples of the ohmic value

OHMIC VALUE	5-DIGIT VALUE
0.22 Ω	0R220
1 Ω	1R000
10 Ω	10R00
100 Ω	100R0
1 kΩ	1K000
10 kΩ	10K00
100 kΩ	100K0
1 ΜΩ	1M000

Table 3	Letter coding for temperature coefficient and
	tolerance

TC (×10 ⁻⁶ /K)	LETTER CODE	TOL. (%)	LETTER CODE
100	D	±5	J
_	-	±1	F

ORDERING EXAMPLE: CLEAR TEXT CODE

The ordering code of a 5063JD resistor, value 5600 $\Omega \pm 1\%$, taped on a bandolier of 5000 units in tape on reel is: 5063JD5K600F12AF5.

Product specification

Metal film resistors

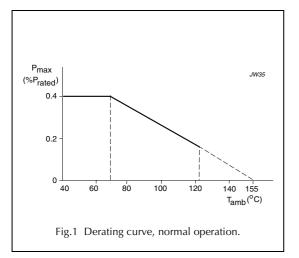
FUNCTIONAL DESCRIPTION

Product characterization

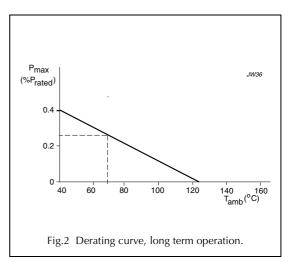
Standard values of nominal resistance are taken from the E24 or E96 series for resistors with a tolerance of $\pm 5\%$ or $\pm 1\%$.

The values of the E24 series are in accordance with *"IEC publication 60063"*.

Limiting values

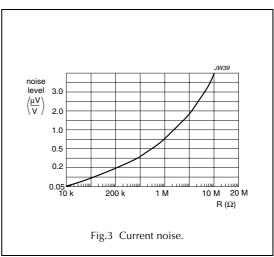

ТҮРЕ	LIMITING VOLTAGE ⁽¹⁾ (V)	LIMITING POWER (W)	
5063JD	200	0.40	

Note

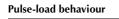

 The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

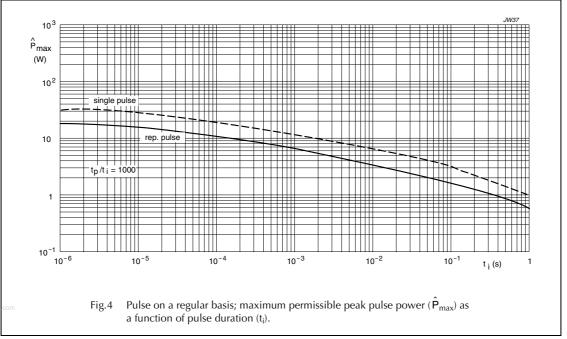
DERATING

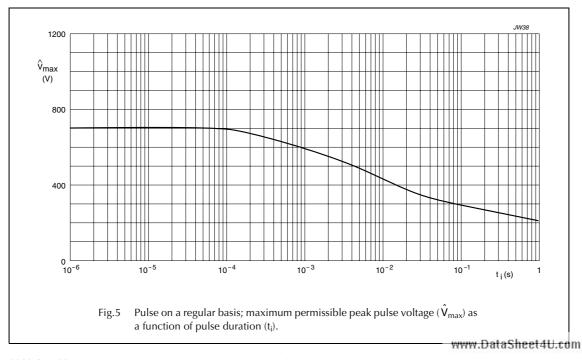
The power that the resistor can dissipate depends on the operating temperature; see Figs 1 and 2.



5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%


NOISE


The current noise is measured in accordance with *"DIN 44049 Part 1 and IEC 600195"*. Maximum values are for 99.8% of all resistors; see Fig 3.



www.DataSheet4U.com

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%

2000 Aug 08

Definition of symbols (see Figs 4, 5, 6 and 7)

SYMBOL	DESCRIPTION		
Ρ̈́	applied peak pulse power		
\hat{P}_{max}	maximum permissible peak pulse power; see Fig.4		
Ŷi	applied peak pulse voltage; see Fig 6		
\hat{V}_{max}	maximum permissible peak pulse voltage; see Fig.5		
V(t)	pulse voltage		
R	nominal resistance value		
P _U	rated dissipation at ambient temperature		
R _{nom}	nominal resistance value		
t _i	pulse duration (rectangular pulses)		
tp	pulse repetition time		

Pulses

The permissible pulse-load is determined by the resistance change as given for the endurance test after 8000 hours.

PULSE VOLTAGE LIMIT

The maximum permissible impulse voltage \hat{V}_{max} is the voltage pulse short overload depending on the impulse time t_i . High ohmic values are protected by the interdependence of voltage limit and impulse time. this function is given by

the equation:
$$\hat{V}_{max} = \frac{2.5 \cdot V_{max}}{1 + t_i \cdot K} + V_{max}$$

 V_{max} = maximum permissible continuous voltage; ti = pulse time; K = 100 s⁻¹.

MAXIMUM PULSE-LOAD

The average load \overline{P} must not exceed the rated dissipation. For resistance values above the critical resistance the rated dissipation is given by the resistance value and the limiting

element voltage
$$V_{max}$$
: $\overline{P} = \frac{1}{t_p R} \int_{t1}^{t2} U^2(t) dt \le P v$

CONTINUOUS AND SINGLE PULSE-LOAD

There is a difference between repetitive pulse-load

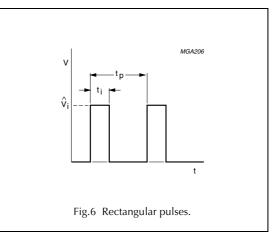
 $\left(\overline{P} = \frac{t_i}{t_p} \cdot \underline{P} \text{ with } \underline{P} = \text{power at the pulse time } t_i\right)$ or

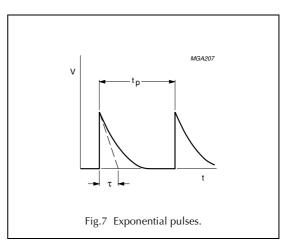
single pulse load (e.g. switching events $\overline{P} > 0$).

A higher pulse-load P_{max} is accepted in the latter case.

2000 Aug 08

5063JD series (space miser) 0.25 to 0.40 W; 1% and 5%


PULSE SHAPES


Figure 6 shows the maximum pulse-load for a rectangular

pulse shape:
$$\overline{P} = \frac{t_i \cdot V^2}{t_p \cdot R}$$

Other pulses should be converted into rectangular pulse shapes (see Fig.7), having the same energy at a given peak voltage. The following equation shows the calculation for exponential pulses:

$$\overline{P} = \frac{\tau_e}{2 \cdot t_p} \cdot \hat{\frac{V^2}{R}} \text{ with } \tau_e = R \cdot C \text{ or } \tau_e = \frac{L}{R}$$

www.DataSheet4U.com

MECHANICAL DATA

Mass per 100 units

13 g

Marking

The nominal resistance and tolerance are marked on the resistor using four or five coloured bands in accordance with IEC publication 60062 *"Colour codes for fixed resistors"*.

Mounting

The resistors are suitable for processing on automatic insertion equipment in addition to cutting and bending machines. The minimum bending is 5 mm (.200 inch).

Outlines

The length of the body (L_1) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation (*"IEC publication 60294"*). For dimensions see Table 4. Fig.8 Outline.

5063JD series (space miser)

0.25 to 0.40 W; 1% and 5%

 Table 4
 Resistor type and physical dimensions; see Fig.8

ТҮРЕ	ØD MAX. (mm)	L ₁ MAX. (mm)	L ₂ MAX. (mm)	Ød (mm)
Dimensions in inches				
5063JD	0.063	.142	1.14	.020
Dimensions in millimetres				
5063JD	1.6	3.6	29	0.5

2000 Aug 08

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Metal Film Resistors - Through Hole category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

MF2S-6K8JI GP55S-1002-FTW GP55S-1004-FTW GP55S-4753-FTW QW210 RCFH-0.5-5TA RCFH-100-5TA RCFH-10-5TA RCFH-110-5TA RCFH-11K-5TA RCFH-11M-5TA RCFH-12K-5TA RCFH-130K-5TA RCFH-13-5TA RCFH-13K-5TA RCFH-13M-5TA RCFH-150K-5TA RCFH-15-5TA RCFH-160-5TA RCFH-160K-5TA RCFH-16-5TA RCFH-180K-5TA RCFH-18K-5TA RCFH-13M-5TA RCFH-200-5TA RCFH-200K-5TA RCFH-20K-5TA RCFH-220-5TA RCFH-220K-5TA RCFH-22K-5TA RCFH-22M-5TA RCFH-240K-5TA RCFH-24K-5TA RCFH-2-5TA RCFH-27-5TA RCFH-27K-5TA RCFH-20K-5TA RCFH-330-5TA RCFH-33-5TA RCFH-3.3M-5TA RCFH-360-5TA RCFH-360K-5TA RCFH-3.6M-5TA RCFH-39-5TA RCFH-39K-5TA RCFH-3.9M-5TA RCFH-430-5TA RCFH-47K-5TA RCFH-510K-5TA RCFH-51-5TA