RCWE

HALOGEN

FREE

www.vishay.com

Vishay Dale

Thick Film Surface Mount Chip Resistors, Wraparound, Extremely Low Value (0.01 Ω to 0.976 Ω)

DESIGN SUPPORT TOOLS

FEATURES

- Extremely low resistance values (0.01 Ω to 0.976 Ω)
- Sulfur resistant (per ASTM B809-95 humid vapor test)
- Enhanced power rating due to long side terminal **RoHS** construction (0612, 1020 types) COMPLIANT
- Suitable for current sensing and shunts
- Metal glaze on high quality ceramic
- · Protective overglaze
- · Lead (Pb)-free solder contacts on Ni barrier layer
- AEC-Q200 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

STANDARD ELECTRICAL SPECIFICATIONS								
GLOBAL MODEL	CASE SIZE	POWER RATING P _{70 °C} W	TEMPERATURE COEFFICIENT ± ppm/°C	RESISTANCE RANGE Ω	TOLERANCE ± %	E-SERIES ⁽²⁾		
			400	0.033 to 0.05	5.0	24		
RCWE0402	0402	0.125	200	0.051 to 0.196	1.0, 5.0	24; 96		
			100	0.2 to 0.976	0.5 ⁽¹⁾ , 1.0, 5.0			
			700	0.010 to 0.018	5.0	24		
	0602	0.0	400	0.02 to 0.0324	1.0, 5.0	24; 96		
RCWE0003	0603	0.2	200	0.033 to 0.105	1.0, 5.0			
			100	0.11 to 0.976	0.5 ⁽¹⁾ , 1.0, 5.0			
			400	0.010 to 0.018	5.0	24		
	0905	0.25	300	0.02 to 0.0324	1.0, 5.0	24; 96		
RCWEU000	0605		200	0.033 to 0.05	1.0, 5.0			
			100	0.051 to 0.976	0.5 ⁽¹⁾ , 1.0, 5.0			
		1.0	300	0.010 to 0.016	2.0, 5.0	24		
RCWE0612	0612		200	0.018 to 0.2	2.0, 5.0			
			100	0.205 to 0.976	1.0, 5.0	24; 96		
		0.5	600	0.010 to 0.018	5.0	24		
	1006		300	0.02 to 0.0324	1.0, 5.0			
RCWE1206	1200		200	0.033 to 0.05	1.0, 5.0	24; 96		
			100	0.051 to 0.976	0.5 ⁽¹⁾ , 1.0, 5.0			
			500	0.010 to 0.018	5.0	24		
	1010	1.0	300	0.02 to 0.0324	1.0, 5.0	24; 96		
RGWEIZIU	1210		200	0.033 to 0.05	1.0, 5.0			
			100	0.051 to 0.976	0.5 ⁽¹⁾ , 1.0, 5.0			
	1000	2.0	200	0.010 to 0.016	2.0, 5.0	24		
RGWEIUZU	1020		100	0.0162 to 0.976	1.0, 5.0	24; 96		
RCWE2010		1.0	600	0.010 to 0.018	5.0	24		
	0010		300	0.02 to 0.0324	1.0, 5.0			
	2010		200	0.033 to 0.05	1.0, 5.0	24; 96		
			100	0.051 to 0.976	0.5 ⁽¹⁾ , 1.0, 5.0	1		
		2.0	600	0.010 to 0.018	5.0	24		
	0510		300	0.02 to 0.0324	1.0, 5.0			
RGWE2512	2512		200	0.033 to 0.05	1.0, 5.0	24; 96		
			100	0.051 to 0.976	0.5 ⁽¹⁾ , 1.0, 5.0	1		

Notes

Power rating depends on the max. temperature at the solder point, the component placement density and the substrate material

Part marking: Reference "Surface Mount Resistor Marking" (<u>www.vishay.com/doc?20020</u>) Tight tolerance of 0.5 % is available for resistance values above 0.300 Ω (0402 size) and above 0.200 Ω (0603 to 2512 sizes) (1)

(2) Use E24 decades only for 5.0 % tolerance. E24 or E96 decades are available for 0.5 % and 1.0 % tolerance. Refer to standard decade table (www.vishay.com/doc?31001)

Revision: 21-Aug-2018

1

Document Number: 20019

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

www.vishay.com

RCWE

Vishay Dale

TECHNICAL SPECIFICATIONS									
UNIT	0402	0603	0805	0612	1206	1210	1020	2010	2512
°C	-55 to +155								
V	(P x R) ^{1/2}								
V	> 75	> 100	> 200	> 100	> 300	> 300	> 300	> 300	> 300
Ω	> 10 ⁹								
g	0.7	3	5.5	11.5	10.5	17.5	27.5	26	40.5
	VIIT °C V Ω Ω g	VNIT 0402 °C V V >75 Ω g 0.7	VNIT 0402 0603 °C - - V - - V > 75 > 100 Ω - - g 0.7 3	VNIT 0402 0603 0805 °C -	VNIT 0402 0603 0805 0612 °C -	TIONS UNIT 0402 0603 0805 0612 1206 °C -55 to +155 -55 to +155 $(P \times R)^{1/2}$ V >75 > 100 > 200 > 100 > 300 Ω	TIONSUNIT040206030805061212061210°C -55 to $+155$ V -55 to $+155$ V $(P \times R)^{1/2}$ V >75 >100 >200 >100 >300 Ω -55 >100 >200 >100 >300 Ω -55 -100 >200 >100 >300 Ω -510^9 -510^9 -755 g 0.7 3 5.5 11.5 10.5	TIONSUNIT0402060308050612120612101020°C -55 to $+155$ -55 to $+157$ V $(P \times R)^{1/2}$ V >75 >100>200>100>300>300>300 Ω -55 -109 -109 -105 17.527.5	TIONSUNIT04020603080506121206121010202010°C -55 to $+155$ -55 to $+155$ V -55 to $+155$ -55 to $+155$ V -75 >100 >200 >100 >300 >300 >300 Ω -75 >100 >200 >100 >300 >300 >300 >300 Ω -75 >100 >55 11.5 10.5 17.5 27.5 26

DIMENSIONS

RCWE0402 to RCWE2512

3D models available: <u>www.vishay.com/doc?31106</u>

Surface mount solder profile recommendations: <u>www.vishay.com/doc?31052</u>

		DI	MENSIONS II	n millimeters	SOLDER PAD DIMENSIONS in millimeters				
SIZE	RESISTANCE RANGE Ω	L	w	н	T1	T2	а	b	I
0402	0.033 to 0.976	1.05 ± 0.05	0.55 ± 0.05	0.35 ± 0.1	0.3 ± 0.15	0.25 ± 0.1	0.7	0.7	0.3
0000	0.01 to 0.03	1.6 ± 0.1	0.85 ± 0.1	0.5 ± 0.1	0.5 ± 0.2	0.3 ± 0.2	0.9	1.0	0.4
0003	0.033 to 0.976				0.3 ± 0.2		0.7	1.0	0.8
0805	0.01 to 0.03	2.0 ± 0.15	13+01	0.55 ± 0.1	0.6 ± 0.2	0.35 ± 0.2	1.0	1.4	0.6
0805	0.033 to 0.976	2.0 ± 0.15	1.5 ± 0.1	0.55 ± 0.1	0.4 ± 0.2	0.35 ± 0.2	0.8	1.4	1.0
0612	0.01 to 0.976	1.6 ± 0.2	3.2 ± 0.2	0.6 ± 0.1	0.4 ± 0.15	0.25 ± 0.15	0.9	3.5	0.8
	0.01 to 0.03	3.1 ± 0.15	1.6 ± 0.15	0.6 ± 0.1	0.9 ± 0.2	0.45 ± 0.2	1.3	1.8	1.0
1206	0.033 to 0.05				0.8 ± 0.2		1.2	1.8	1.2
	0.051 to 0.976				0.45 ± 0.2		1.0	1.8	1.6
1210	0.01 to 0.03	3.1 ± 0.2	2.5 ± 0.2	0.6 ± 0.1	0.8 ± 0.2	0.4 ± 0.2	1.3	2.6	1.1
1210	0.033 to 0.976				0.4 ± 0.2		0.9	2.6	2.0
1020	0.01 to 0.976	2.5 ± 0.2	5.0 ± 0.2	0.6 ± 0.1	0.55 ± 0.15	0.30 ± 0.15	1.2	5.5	1.4
2010	0.01 to 0.03	5.0 ± 0.2	2.5 ± 0.15	0.6 ± 0.1	1.6 ± 0.3	0.6 ± 0.2	2.3	3.0	1.4
	0.033 to 0.05				0.7 ± 0.3		1.4	3.0	3.2
	0.051 to 0.976				0.7 ± 0.3		1.4	3.0	3.2
	0.01 to 0.03	6.3 ± 0.2	3.15 ± 0.15	0.6 ± 0.1	2.0 ± 0.3	0.6 ± 0.2	2.8	3.6	1.4
2512	0.033 to 0.05				0.8 ± 0.3		1.6	3.6	3.8
	0.051 to 0.976				0.8 ± 0.3		1.6	3.6	3.8

Revision: 21-Aug-2018

Document Number: 20019

For technical questions, contact: <u>ww2bresistors@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VISHAY

www.vishay.com

PERFORMANCE							
TEST	TEST LIMITS						
Thermal shock	MIL-STD-202, method 107, -55 °C to +125 °C, 300 cycles at each extreme	\pm 1.0 % + 0.0005 Ω					
Short time overload	2x rated power; size and duration - 0402: 0.5 s, 0603 and 0805: 1 s, 1206 and larger: 2 s	\pm 0.5 % + 0.0005 Ω					
High temperature exposure	MIL-STD-202, method 108, 1000 h at T = 125 °C, 0 % power	\pm 2.0 % + 0.0005 Ω					
Temperature cycling	JESD 22, method JA-104, 1000 cycles (-55 °C to +125 °C)	\pm 2.0 % + 0.0005 Ω					
Biased humidity	MIL-STD-202, method 103, 1000 h 85 °C/85 % RH, 10 % x (P x R) ^{1/2}	\pm 2.0 % + 0.0005 Ω					
Mechanical shock	MIL-STD-202, method 213, condition C, 10 g's, 6 ms (half sine), 3 directions	\pm 1.0 % + 0.0005 Ω					
Vibration	MIL-STD-202, method 204, 5 g's, 20 min, 12 cycles, 3 directions, 10 Hz to 2000 Hz	\pm 1.0 % + 0.0005 Ω					
Operational life	MIL-STD-202, method 108, 1000 h at T = 125 °C at rated power	\pm 2.0 % + 0.0005 Ω					
Resistance to solder heat	MIL-STD-202, method 210, +260 °C solder, 10 s to 12 s dwell, 25 mm/s emergence	\pm 1.0 % + 0.0005 Ω					
Moisture resistance	MIL-STD-202, method 106, 0 % power, 7a and 7b not required	± 2.0 % + 0.0005 Ω					

PACKAGING									
MODEL	REEL								
WODEL	TAPE WIDTH	DIAMETER	PITCH	PIECES/REEL	CODE				
RCWE0402	8 mm/punched paper	180 mm/7"	2 mm	10 000	EA				
RCWE0603	8 mm/punched paper	180 mm/7"	4 mm	5000	EA				
RCWE0805	8 mm/punched paper	180 mm/7"	4 mm	5000	EA				
RCWE0612	8 mm/punched paper	180 mm/7"	4 mm	5000	EA				
RCWE1206	8 mm/punched paper	180 mm/7"	4 mm	5000	EA				
RCWE1210	8 mm/punched paper	180 mm/7"	4 mm	5000	EA				
RCWE1020	12 mm/embossed plastic	180 mm/7"	4 mm	4000	EA				
RCWE2010	12 mm/embossed plastic	180 mm/7"	4 mm	4000	EA				
RCWE2512	12 mm/embossed plastic	180 mm/7"	8 mm	2000	EA				

Notes

• Embossed carrier tape per EIA-481-1A

Additional packaging details at: www.vishay.com/doc?31543

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Power Supplies category:

Click to view products by Mean Well manufacturer:

Other Similar products are found below :

 70841011
 73-551-0005
 AAD600S-4-OP
 R22095
 HWS50A-5/RA
 KD0204
 9021
 S-15F-12
 LDIN100150
 LPM000-BBAR-01
 LPX17S-C

 EVS57-10R6/R
 FDC40-24S12
 FRV7000G
 22929
 CQM1IA121
 40370121900
 VI-PU22-EXX
 40370121910
 LDIN5075
 432703037161

 WRB01X-U
 LPX140-C
 08-30466-1040G
 09-160CFG
 70841004
 70841025
 VPX3000-CBL-DC
 LPM000-BBAR-05
 LPM000-BBAR-08

 LPM124-OUTA1-48
 LPM000-BBAR-07
 LPM109-OUTA1-10
 LPM616-CHAS
 08-30466-1055G
 08-30466-2175G
 DMB-EWG
 TVQF

 1219-185
 6504-226-2101
 CQM1IPS01
 XPFM201A+
 MAP80-4000G
 LFP300F-24-TY
 SMP21-L20-DC24V-5A
 VI-MUL-ES
 08-30466

 0065G
 CME240P-24
 VI-RU031-EWWX
 08-30466-0028G
 S82Y-TS01
 S82Y-TS01