Ultrafast Rectifier, 2×8 A FRED Pt ${ }^{\circledR}$

TO-263AB (D^{2} PAK)

FEATURES

- Ultrafast recovery time
- Low forward voltage drop
- Low leakage current
- $175{ }^{\circ} \mathrm{C}$ operating junction temperature
- Meets MSL level 1, per J-STD-020, LF maximum peak of $260^{\circ} \mathrm{C}$
- AEC-Q101 qualified
- Meets JESD 201 class 1 whisker test
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

MUR.. series are the state of the art ultrafast recovery rectifiers specifically designed with optimized performance of forward voltage drop and ultrafast recovery time.
The planar structure and the platinum doped life time control, guarantee the best overall performance, ruggedness and reliability characteristics.
These devices are intended for use in the output rectification stage of SMPS, UPS, DC/DC converters as well as freewheeling diode in low voltage inverters and chopper motor drives.
Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Peak repetitive reverse voltage	$\mathrm{V}_{\text {RRM }}$		200	V
Average rectified forward current \quadper leg 	$I_{\text {F }}(\mathrm{AV})$		8.0	A
		Rated $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	16	
Non-repetitive peak surge current per leg	$\mathrm{I}_{\text {FSM }}$		100	
Peak repetitive forward current per leg	I_{FM}	Rated V_{R}, square wave, $20 \mathrm{kHz}, \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	16	
Operating junction and storage temperatures	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	$\begin{gathered} \mathrm{V}_{\mathrm{BR}}, \\ \mathrm{~V}_{\mathrm{R}} \end{gathered}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	200	-	-	V
Forward voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A}$	-	-	0.975	
		$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-	-	0.895	
		$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}}$ rated	-	-	5	
Reverse leakage current	I_{R}	$\mathrm{T}_{\mathrm{J}}=150{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}}$ rated	-	-	250	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}$	-	25	-	
Junction capacitance	$\mathrm{C}_{\text {T }}$	Measured lead to lead 5 mm from package body	-	8.0	-	pF
Series inductance	$\mathrm{L}_{\text {s }}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	200	-	-	nH

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Reverse recovery time	$\mathrm{trrr}^{\text {r }}$	$\mathrm{l}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$		-	19	-	ns
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~A} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=160 \mathrm{~V} \end{aligned}$	-	20	-	
		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		-	34	-	
Peak recovery current	$\mathrm{I}_{\text {RRM }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		-	1.7	-	A
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		-	4.2	-	
Reverse recovery charge	Q_{rr}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		-	23	-	nC
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		-	75	-	

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$		-65	-	175	${ }^{\circ} \mathrm{C}$
Thermal resistance, junction to case per leg	$\mathrm{R}_{\text {thJc }}$		-	-	3.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, junction to ambient per leg	$\mathrm{R}_{\text {thJA }}$		-	-	50	
Thermal resistance, case to heatsink	$\mathrm{R}_{\mathrm{th} \mathrm{Cs}}$	Mounting surface, flat, smooth and greased	-	0.5	-	
Weight			-	2.0	-	g
			-	0.07	-	oz.
Mounting torque			$\begin{gathered} \hline 6.0 \\ (5.0) \end{gathered}$	-	$\begin{gathered} 12 \\ (10) \\ \hline \end{gathered}$	$\mathrm{kgf} \cdot \mathrm{cm}$ (lbf $\cdot \mathrm{in}$)
Marking device		Case style TO-263AB (${ }^{2}$ PAK)	MURB1620CTH			
		Case style TO-262AA	MURB1620CT-1H			

Fig. 1 - Typical Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance $Z_{\text {thJc }}$ Characteristics

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Vishay Semiconductors

Fig. 7 - Typical Reverse Recovery Time vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$

Fig. 8 - Typical Stored Charge vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$

Note

(1) Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) \times R_{t h J C}$;
$P d=$ Forward power loss $=I_{F(A V)} \times V_{F M}$ at ($\left.I_{F(A V)} / D\right)$ (see fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D})$; I_{R} at $\mathrm{V}_{\mathrm{R} 1}=$ Rated V_{R}

(1) $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$
(1) $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ - rate of change of current through zero crossing
(2) $I_{\text {RRM }}$ - peak reverse recovery current
(3) $t_{r r}$ - reverse recovery time measured from zero crossing point of negative going I_{F} to point where a line passing through $0.75 \mathrm{I}_{\text {RRM }}$ and $0.50 \mathrm{I}_{\text {RRM }}$ extrapolated to zero current.
(4) $Q_{r r}$ - area under curve defined by $t_{r r}$ and $I_{\text {RRM }}$

$$
Q_{r r}=\frac{t_{r r} \times I_{R R M}}{2}
$$

(5) $\mathrm{dl}_{(\text {rec) })} / \mathrm{dt}$ - peak rate of change of current during t_{b} portion of $t_{r r}$

Fig. 9 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

1	Vishay Semiconductors product
2	Ultrafast MUR series
3	$\mathrm{B}=\mathrm{D}^{2} \mathrm{PAK} /$ TO-262
4	Current rating (16 = 16 A)
5	Voltage rating ($20=200 \mathrm{~V}$)
6	- CT = center tap (dual)
7	- - None = D ${ }^{2}$ PAK
	- -1 = TO-262

8 - \quad None $=$ tube (50 pieces $)$

- L = tape and reel (left oriented, for D^{2} PAK package)
- $\mathrm{R}=$ tape and reel (right oriented, for D^{2} PAK package)

9 - $\mathrm{H}=\mathrm{AEC}-\mathrm{Q} 101$ qualified
10 - Environmental digit:

- M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

ORDERING INFORMATION (Example)			
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-MURB1620CTHM3	50	1000	Antistatic plastic tube
VS-MURB1620CT-1HM3	50	1000	Antistatic plastic tube
VS-MURB1620CTLHM3	800	800	13 " diameter reel
VS-MURB1620CTRHM3	800	800	13 " diameter reel

LINKS TO RELATED DOCUMENTS		
Dimensions	TO-263AB (D2PAK)	$\underline{w w w . v i s h a y . c o m / d o c ? 95046 ~}$
	TO-262AA	$\underline{w w w . v i s h a y . c o m / d o c ? 95419 ~}$
Part marking information	TO-263AB (D²PAK)	$\underline{w w w . v i s h a y . c o m / d o c ? 95444 ~}$
	TO-262AA	www.vishay.com/doc?95443
Packaging information	TO-263AB (D2PAK)	$\underline{w w w . v i s h a y . c o m / d o c ? 95032 ~}$

D2PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES	SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.			MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190		D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010		E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039		E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4	e		BS	0.10	BSC	
b2	1.14	1.78	0.045	0.070		H	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4	L	1.78	2.79	0.070	0.110	
c	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4	L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065		L3	0.2	BC	0.01	BSC	
D	8.51	9.65	0.335	0.380	2	L4	4.78	5.28	0.188	0.208	

Notes

${ }^{(1)}$ Dimensioning and tolerancing per ASME Y14.5 M-1994
${ }^{(2)}$ Dimension D and E do not include mold flash. Mold flash shall not exceed $0.127 \mathrm{~mm}\left(0.005{ }^{\prime \prime}\right)$ per side. These dimensions are measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Datum A and B to be determined at datum plane H
(6) Controlling dimension: inch
${ }^{(7)}$ Outline conforms to JEDEC ${ }^{\circledR}$ outline TO-263AB

DIMENSIONS in millimeters and inches
Modified JEDEC outline TO-262

SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX	MIN.	MAX.	
A	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
c	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
e	2.54 BSC		0.100 BSC		
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.56	3.71	0.140	0.146	

Notes

(1) Dimensioning and tolerancing as per ASME Y14.5M-1994
${ }^{(2)}$ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm ($0.005{ }^{\prime \prime}$) per side. These dimensions are measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Controlling dimension: inches
(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

TO-262

Note
${ }^{(1)}$ If part number contain " H " as last digit, product is AEC-Q101 qualified

ENVIRONMENTAL NAMING CODE (Z)	PRODUCT DEFINITION
A	Termination lead (Pb)-free
B	Totally lead (Pb)-free
E	RoHS-compliant and termination lead (Pb)-free
F	RoHS-compliant and totally lead (Pb)-free
M	Halogen-free, RoHS-compliant and termination lead (Pb)-free
N	Halogen-free, RoHS-compliant and totally lead (Pb)-free
G	Green

D2PAK

Note
(1) If part number contain "H" as last digit, product is AEC-Q101 qualified

ENVIRONMENTAL NAMING CODE (Z)	PRODUCT DEFINITION
A	Termination lead (Pb)-free
B	Totally lead (Pb)-free
E	RoHS-compliant and termination lead (Pb)-free
F	RoHS-compliant and totally lead (Pb)-free
M	Halogen-free, RoHS-compliant, and termination lead (Pb)-free
N	Halogen-free, RoHS-compliant, and totally lead (Pb)-free
G	Green

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by Alliance Memory manufacturer:
Other Similar products are found below :
5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB GS8161Z36DD-200I GS88237CB200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2\#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IS62WV51216EBLL-45BLI

IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS81284Z36B-250I M38510/28902BVA IS62WV12816ALL-70BLI 59628971203XA 5962-8971202ZA

