Not for New Designs - Alternative Device: MKP338 1 X1

MKP336 1 X1

www.vishay.com

Vishay BCcomponents

Interference Suppression Film Capacitors MKP Radial Potted Type

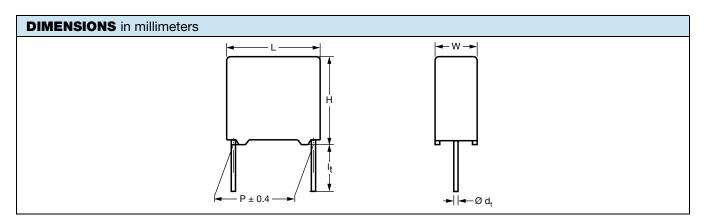
FEATURES

- 15 mm to 27.5 mm lead pitch. Supplied in box, taped on ammopack or reel
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

RoHS COMPLIANT

APPLICATIONS

X1 class


For X1 electromagnetic interference suppression in across the line applications (50 Hz / 60 Hz) with a maximum mains voltage of 275 $V_{AC}.$

For application limitations please refer to section "Application Notes".

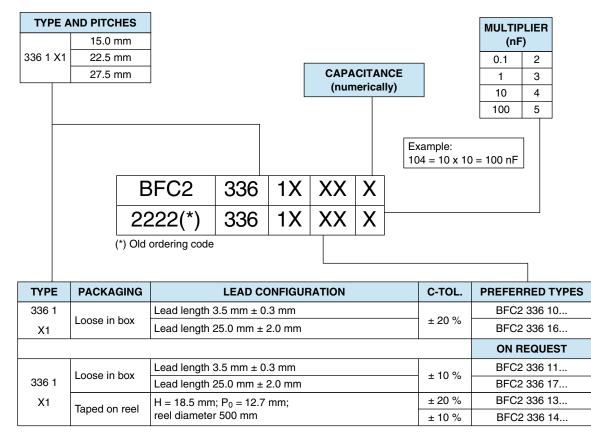
QUICK REFERENCE DATA		
Capacitance range (E12 series)	0.01 µF to 1 µF (preferred values according to E6)	
Capacitance tolerance	± 20 %; ± 10 %; ± 5 %	
Rated AC voltage	275 V _{AC} ; 50 Hz to 60 Hz	
Permissible DC voltage	630 V _{DC}	
Climatic testing class (according to EN 60068-1)	55/105/56/B	
Maximum application temperature	105 °C	
Rated temperature	105 °C	
Leads	Tinned wire	
Reference standards	IEC 60384-14:2013 IEC 60384-14:2013 / AMD1:2016 EN 60384-14:2013 + AMD1:2016 IEC 60065, pass. flamm. class B UL 60384-14 CSA E384-14	
Dielectric	Polypropylene film	
Electrodes	Metallized film	
Construction	Mono construction	
Encapsulation	Plastic case, epoxy resin sealed, flame retardant UL-class 94 V-0	
Marking	C-value; tolerance; rated voltage; sub-class; manufacturer's type; code for dielectric material; manufacturer location, year and week; manufacturer's logo or name; safety approvals	

Note

· For more detailed data and test requirements, contact rfi@vishay.com

Revision: 15-Dec-2021

Document Number: 28117


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

MKP336 1 X1

Vishay BCcomponents

COMPOSITION OF CATALOG NUMBER

Note

⁽¹⁾ For detailed tape specifications refer to packaging information: <u>www.vishay.com/doc?28139</u>.

SPECIFIC REFERENCE DATA				
DESCRIPTION	VALUE			
Tangent of loss angle:	at 10 kHz			
C ≤ 100 nF	≤ 10 x 10 ⁻⁴			
100 nF < C ≤ 470 nF	$\leq 20 \times 10^{-4}$			
C > 470 nF	≤ 70 x 10 ⁻⁴			
Rated voltage pulse slope (dU/d _t) _R at 385 V _{DC} :				
P = 15 mm	250 V/µs			
P = 22.5 mm	150 V/µs			
P = 27.5 mm	100 V/µs			
R between leads, for C \leq 0.33 µF at 100 V; 1 min	> 15 000 MΩ			
RC between leads, for C > 0.33 µF at 100 V; 1 min	> 5000 s			
R between leads and case; 100 V; 1 min	> 30 000 MΩ			
Withstanding (DC) voltage (cut off current 10 mA) $^{(1)}$; rise time \leq 1000 V/s	3400 V; 1 min			
Withstanding (AC) voltage between leads and case	2050 V; 1 min			

Note

⁽¹⁾ See "Voltage Proof Test for Metalized Film Capacitors": <u>www.vishay.com/doc?28169</u>

MKP336 1 X1

Vishay BCcomponents

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ND PACKAGING
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	REEL 500 mm ⁽¹⁾⁽²⁾
PITCH = 15.0 mm ± 0.4 mm; dt = 0.6 mm ± 0.06 mm; U _{RAC} = 275 V; C-TOL 9007 1000 19001 19007 1000 16153 1000 16223 1000 16233 1000 16474	n H = 18.5 mm; P ₀ = 12.7 mm
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NUMBER
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 13153 1100
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13223
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13333 900
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13473 800
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c c c c c c c c } \hline 0.10 & 7.0 \times 16.5 \times 26.0 & 2.9 & 19003 \\ \hline 0.15 & 8.5 \times 18.0 \times 26.0 & 3.8 & 10154 \\ \hline 0.22 & 10.0 \times 19.5 \times 26.0 & 6.8 & 10224 \\ \hline \\ \hline PITCH = 27.5 \ mm \pm 0.4 \ mm; \ d_t = 0.8 \ mm \pm 0.08 \ mm; \ U_{RAC} = 275 \ V; \ C-TOL \\ \hline \hline 0.22 & 11.0 \times 21.0 \times 31.0 & 7.4 & 19005 \\ \hline 0.33 & 13.0 \times 23.0 \times 31.0 & 9.2 & 10334 \\ \hline 0.47 & 15.0 \times 25.0 \times 31.0 & 12.3 & 10474 \\ \hline 0.68 & 18.0 \times 28.0 \times 31.0 & 16.1 & 10684 \\ \hline 1.00 & 21.0 \times 31.0 \times 31.0 & 20.3 & 10105 & 50 & 16105 & 75 \\ \hline \\ PITCH = 15.0 \ mm \pm 0.4 \ mm; \ d_t = 0.6 \ mm; \ U_{RAC} = 275 \ V; \ C-TOL \\ \hline \end{array} $	13104 600
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19004 550
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13224 400
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	= ± 20 %
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
0.68 18.0 x 28.0 x 31.0 16.1 10684 16684 1.00 21.0 x 31.0 x 31.0 20.3 10105 50 16105 75 PITCH = 15.0 mm ± 0.4 mm; dt = 0.6 mm ± 0.06 mm; U _{RAC} = 275 V; C-TOL	ز
1.00 21.0 x 31.0 x 31.0 20.3 10105 50 16105 75 PITCH = 15.0 mm ± 0.4 mm; dt = 0.6 mm ± 0.06 mm; U _{RAC} = 275 V; C-TOL	
PITCH = 15.0 mm ± 0.4 mm; dt = 0.6 mm ± 0.06 mm; U _{RAC} = 275 V; C-TOL	
	14103
50 x 11 0 x 1/5 1	14123 1100
0.015 0.015 11153 1000 17153 100 275 0.018 11183 1000 17183 100	0 14153 14183
0.022 0.010 11223 17223	14103
0.022 6.0 x 12.0 x 17.5 1.4 11273 17273	14223 900
PITCH = 15.0 mm \pm 0.4 mm; d _t = 0.8 mm \pm 0.08 mm; U _{RAC} = 275 V; C-TOL	
0.033 17333 17333	14333
0.039 7.0 x 13.5 x 17.5 1.8 11393 1000 17393	14393 800
0.047 0.000 11473 1000 17473 0.00	14473
0.056 8.5 x 15.0 x 17.5 2.4 11563 17563 50	14563 650
0.068 11683 17683	14683
0.082 10.0 x 16.5 x 17.5 3 11823 500 17823	14823 600
PITCH = 22.5 mm ± 0.4 mm; d _t = 0.8 mm ± 0.08 mm; U _{RAC} = 275 V; C-TOL	
0.10 7.0 x 16.5 x 26.0 2.9 11104 17104 50	
0.12 11124 17124	14124
0.12 8.5 x 18.0 x 26.0 3.8 11154 200 17124 25	14154 450
0.18 10.0 x 19.5 x 26.0 6.8 11184 17184 50	
PITCH = 27.5 mm ± 0.4 mm; dt = 0.8 mm ± 0.08 mm; U _{RAC} = 275 V; C-TOL	
0.22 11224 17224	
0.27 11.0 x 21.0 x 31.0 7.4 11274 17274	
0.33 13.0 x 23.0 x 31.0 9.2 11334 17334	
0.39 11394 100 17394 12	ز
0.47 15.0 x 25.0 x 31.0 12.3 11474 17474	
0.56 11564 17564	
0.68 18.0 x 28.0 x 31.0 16.1 11684 17684	
0.82 21.0 x 31.0 x 31.0 20.3 11824 50 17824 75	1

Notes

SPQ = Standard Packing Quantity

⁽¹⁾ Reel diameter = 356 mm is available on request ⁽²⁾ H = In tape height; P₀ = Sprocket hole distance; for detailed specifications refer to Packaging Information.

⁽³⁾ Weight for short lead product only

Revision: 15-Dec-2021

3

For technical questions, contact: rfi@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

MKP336 1 X1

www.vishay.com

Vishay BCcomponents

APPROVALS					
SAFETY APPROVALS X1	VOLTAGE	VALUE	FILE NUMBERS	LINKS	
EN 60384-14 (ENEC) (= IEC 60384-14 ed-4 (2013))	275 V _{AC}	10 nF to 1 µF	ENEC16/FI/21/01061	www.vishay.com/doc?28197	
UL 60384-14	275 V _{AC}	10 nF to 1 µF	E354331	www.viebey.com/doc228188	
CSA E384-14	275 V _{AC}	10 nF to 1 µF	E354331	www.vishay.com/doc?28188	
CB-Test-Certificate	275 V _{AC}	10 nF to 1 µF	FI-39828/A1	www.vishay.com/doc?28198	

The ENEC-approval together with the CB-Certificate replace all national marks of the following countries (they have already signed the ENEC-Agreement): Austria; Belgium; Czech. Republic; Denmark; Finland; France; Germany; Greece; Hungary; Ireland; Italy; Luxembourg; Netherlands; Norway; Portugal; Slovenian; Spain; Switzerland and United Kingdom.

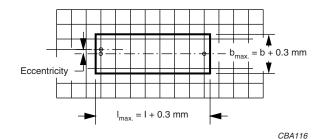
MOUNTING

Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoleers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to "Packaging information".

Specific Method of Mounting to Withstand Vibration and Shock


In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:

- For pitches \leq 15 mm capacitors shall be mechanically fixed by the leads
- For longer pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements on Printed Circuit Board

The maximum length and width of film capacitors is shown in Figure:

- Eccentricity as in figure. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned
- Product height with seating plane as given by "IEC 60717" as reference: $h_{max.} \le h + 0.3 \text{ mm}$

SOLDERING CONDITIONS

For general soldering conditions and wave soldering profile, we refer to the application note: **"Soldering Guidelines for Film Capacitors":** <u>www.vishay.com/doc?28171</u>

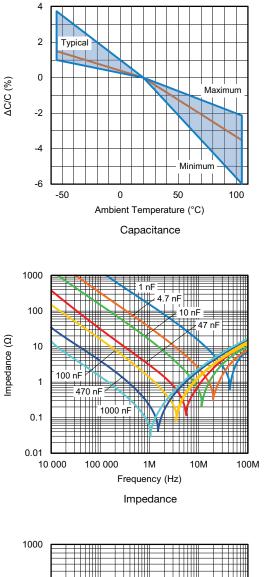
Storage Temperature

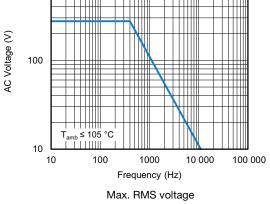
 T_{sta} = -25 °C to +35 °C with RH maximum 75 % without condensation

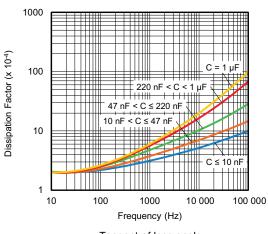
Ratings and Characteristics Reference Conditions

Unless otherwise specified, all electrical values apply to an ambient temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

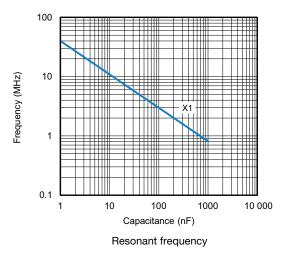
For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

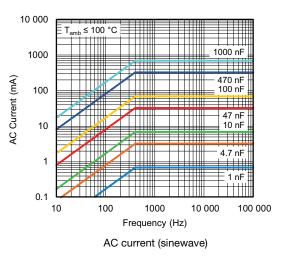

Not for New Designs - Alternative Device: MKP338 1 X1




MKP336 1 X1

Vishay BCcomponents


CHARACTERISTICS

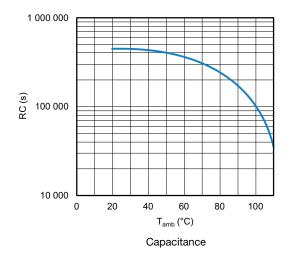


Tangent of loss angle

Revision: 15-Dec-2021

5 For technical questions, contact: rfi@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000


Not for New Designs - Alternative Device: MKP338 1 X1

www.vishay.com

MKP336 1 X1

Vishay BCcomponents

APPLICATION NOTES

- For X2 electromagnetic interference suppression in standard across the line applications (50 Hz / 60 Hz) with a maximum mains voltage of 310 V_{AC}
- For series impedance applications we refer to application note www.vishay.com/doc?28153
- For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: <u>dc-film@vishay.com</u>
- These capacitors are not intended for continuous pulse application. For these situations capacitors of the AC and pulse programs must be used
- The maximum ambient temperature must not exceed 110 °C. (125 °C for less than 1000 h) for C \leq 470 nF and 110 °C for C > 470 nF
- Rated voltage pulse slope:

If the pulse voltage is lower than the rated voltage, the values of the specific reference data can be multiplied by 435 V_{DC} and divided by the applied voltage

INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-14 ed-4 (2013) and Specific Reference Data."

GROUP C INSPECTION REQUIREMENTS			
SUB-CLAUSE NUMBER AND TEST	D OR ND	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1	D		
4.1 Dimensions (detail)			As specified in chapters "General Data" of this specification
Initial measurements		Capacitance Tangent of loss angle: For C \leq 470 nF at 100 kHz For C > 470 nF at 10 kHz	
4.3 Robustness of terminations		Tensile: load 10 N; 10 s Bending: load 5 N; 4 x 90°	No visible damage

Revision: 15-Dec-2021

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

www.vishay.com

MKP336 1 X1

Vishay BCcomponents

GROUP C INSPECTION REQUIREMENTS				
SUB-CLAUSE NUMBER AND TEST	D OR ND	CONDITIONS	PERFORMANCE REQUIREMENTS	
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1	D			
4.4 Resistance to soldering heat		No pre-drying Method: 1A Solder bath: 260 °C Duration: 10 s		
4.19 Component solvent resistance		Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: Min. 1 h, max. 2 h		
4.4.2 Final measurements		Visual examination	No visible damage Legible marking	
		Capacitance	$ \Delta C/C \le 5$ % of the value measured initially	
		Tangent of loss angle	Increase of tan δ : \leq 0.008 Compared to values measured initially	
		Insulation resistance	As specified in section "Insulation Resistance" of this specification	
SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1	D			
Initial measurements		Capacitance Tangent of loss angle: For C \leq 470 nF at 100 kHz For C $>$ 470 nF at 10 kHz	No visible damage Legible marking	
4.20 Solvent resistance of the marking: see section "General Notes"; item 5		Isopropylalcohol at room temperature Method: 1 Rubbing material: cotton wool Immersion time: 5 min ± 0.5 min	No visible damage	
4.6 Rapid change of temperature		θA = - 55 °C θB = + 105 °C 5 cycles		
SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1	D			
4.6.1 Inspection		Duration t = 30 min		
4.7 Vibration (see note 3.1)		Visual examination Mounting: see section "Mounting" of this specification Procedure B4: Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s ² (whichever is less severe) Total duration 6 h	No visible damage	
4.7.2 Final inspection		Visual examination	No visible damage	

Revision: 15-Dec-2021

Document Number: 28117

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

MKP336 1 X1

Vishay BCcomponents

GROUP C INSPECTION REQUIREMENTS				
SUB-CLAUSE NUMBER AND TEST	D OR ND	CONDITIONS	PERFORMANCE REQUIREMENTS	
SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1	D			
4.9 Shock (see note 3)		Mounting: See section "Mounting" for more information Pulse shape: Half sine Acceleration: 490 m/s ² Duration of pulse: 11 ms		
4.9.2 Final measurements		Visual examination	No visible damage	
		Capacitance	$ \Delta C/C \leq 5$ % of the value measured initially	
		Tangent of loss angle	Increase of tan $\delta : \le 0.008$ Compared to values measured initially	
		Insulation resistance	As specified in section "Insulation Resistance" of this specification	
SUB-GROUP C1 COMBINED SAMPLE OF SPECIMENS OF SUB-GROUPS C1A AND C1B	D			
4.11 Climatic sequence				
4.11.1 Initial measurements		Capacitance Measured in 4.4.2 and 4.9.2 Tangent of loss angle: Measured initially in C1A and C1B		
4.11.2 Dry heat		Temperature: 105 °C Duration: 16 h		
4.11.3 Damp heat cyclic Test Db First cycle				
4.11.4 Cold		Temperature: - 55 °C Duration: 2 h		
4.11.5 Damp heat cyclic Test Db remaining cycles				
SUB-GROUP C1 COMBINED SAMPLE OF SPECIMENS OF SUB-GROUPS C1A AND C1B	D			
4.11.6 Final measurements		Visual examination	No visible damage Legible marking	
		Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.11.1.	
		Tangent of loss angle	Increase of tan $\delta :\leq 0.008$ compared to values measured in 4.11.1	
		Voltage proof 1200 V _{DC} ; 1 min between term	No permanent breakdown or flash-over	
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification	

Revision: 15-Dec-2021

8 For technical questions, contact: <u>rfi@vishay.com</u> Document Number: 28117

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

MKP336 1 X1

Vishay BCcomponents

GROUP C INSPECTION REQUIREMENTS				
SUB-CLAUSE NUMBER AND TEST	D OR ND	CONDITIONS	PERFORMANCE REQUIREMENTS	
SUB-GROUP C2	D			
4.12 Damp heat steady state		56 days, 40 °C, 90 % to 95 % RH, no load capacitance		
4.12.1 Initial measurements		Tangent of loss angle at 10 kHz		
4.12.3 Final measurements		Visual examination	No visible damage Legible marking	
		Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.12.1.	
		Tangent of loss angle	Increase of tan δ : \leq 0.008 Compared to values measured in 4.12.1.	
		Voltage proof 1200 V _{DC} ; 1 min between term	No permanent breakdown or flash-over	
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification	
SUB GROUP C3	D			
4.13.1 Initial measurements		Capacitance Tangent of loss angle: For C \leq 470 nF at 100 kHz For C $>$ 470 nF at 10 kHz		
4.13 Impulse voltage		3 successive impulses, full wave, peak voltage: X1: 4 kV Max. 24 pulses	No selfhealing breakdowns or flashover	
4.14 Endurance		Duration: 1000 h 1.25 U _{RAC} at 105 °C Once in every hour the voltage is increased to 1000 V _{RMS} for 0.1 s via resistor of 47 $\Omega \pm 5$ %		
SUB GROUP C3	D			
4.14.7 Final measurements		Visual examination	No visible damage Legible marking	
		Capacitance	$ \Delta C/C \le 10$ % compared to values measured in 4.13.1.	
		Tangent of loss angle	Increase of tan δ : \leq 0.008 Compared to values measured in 4.13.1.	
		Voltage proof 1200 V _{DC} ; 1 min between terminations 2050 V _{DC} ; 1 min between terminations and case	No permanent breakdown or flash-over	
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification	

Revision: 15-Dec-2021

9 For technical questions, contact: <u>rfi@vishay.com</u> Document Number: 28117

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

MKP336 1 X1

Vishay BCcomponents

GROUP C INSPECTION REQUIREMENTS				
SUB-CLAUSE NUMBER AND TEST	D OR ND	CONDITIONS	PERFORMANCE REQUIREMENTS	
SUB-GROUP C 4	D			
4.15 Charge and discharge		10 000 cycles (50 c/s) charge to U _R half sinewave Duration: 5 ms Discharge resistance: $R = \frac{385 V_{DC}}{1.5 x C(dU/dt)}$ $R_{min.} = 2.2$		
4.15.1 Initial measurements		Capacitance Tangent of loss angle For C \leq 470 nF at 100 kHz For C > 470 nF at 10 kHz		
4.15.3 Final measurements		Capacitance	$ \Delta C/C \le 10$ % compared to values measured in 4.15.1.	
		Tangent of loss angle	Increase of tan δ : ≤ 0.008 Compared to values measured in 4.15.1	
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification	
SUB-GROUP C5	D			
4.16 Radio frequency characteristic		Resonance frequency	As specified in section "Resonant Frequency" of this specification. \pm 10 %	
SUB-GROUP C6	D			
4.17 Passive flammability Class B		Bore of gas jet: Ø 0.5 mm Fuel: Butane Test duration for actual volume V in mm ³ : $V \le 250: 10 \text{ s}$ $250 < V \le 500: 20 \text{ s}$ $500 < V \le 1750: 30 \text{ s}$ V > 1750: 60 s One flame application	After removing test flame from capacitor, the capacitor must not continue to burn for more than 10 s. No burning particle must drop from the sample.	
SUB-GROUP C7	D			
4.18 Active flammability		20 x 4 kV discharges on the test capacitor connected to U _R	The cheese cloth around the capacitors shall not burn with a flame. No electrical measurements are required.	

Revision: 15-Dec-2021

10 For technical questions, contact: <u>rfi@vishay.com</u> Document Number: 28117

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Safety Capacitors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

 R49AN347000A1K
 B32022B3223K026
 B32912A3104K026
 46KI3470DQM1K
 MKPY2-.02230020P15
 46KI333050M1K

 46KN333000M1M
 46KN347000M1M
 46KR422000M1K
 B32922D3334K189
 B32924C3824K189
 46KI3100DQM1M
 HUB820-P
 BFC2

 33910103
 YV101103Z060HAND5P
 46KN3330JBM1K
 413N32200000M
 4631333000M1K
 46KF2470JBN0M
 46KF268000M1M

 46KF310000M1M
 46KI22205001M
 46KI24705201K
 46KI2470CK01M
 46KI2470ND01K
 46KI315000M2K

 46KI315000M2M
 46KI3150CKM2K
 46KI3150CKM2M
 46KI3150NDM2M
 46KI3220JLM1M
 46KN3150JH01K

 46KN34705001K
 46KN347050N0K
 46KN3470JHP0M
 46KN410040H1M
 46KW510050M1K
 474I24700003K
 PHE840MD6220MD13R30

 PHE840MY6470MD14R06
 PHE845VD5470MR06
 YV500103Z060B20X5P
 MKPX2R-1/400/10P27
 YP102271K050B20C6P

 YP102391K050BAND5P
 YP501101K040BAND5P
 YP102681K060B20C6P
 YP501121K040B20C6P