

Optocoupler, Phototriac Output, Zero Crossing

DESIGN SUPPORT TOOLS

DESCRIPTION

The BRT21, BRT22, BRT23 product family consists of AC switch optocouplers with zero voltage detectors with two electrically insulated lateral power ICs which integrate a thyrister system, a photo detector and noise suppression at the output and an IR GaAs diode input.

High input sensitivity is achieved by using an emitter follower phototransistor and a SCR predriver resulting in an LED trigger current of less than 2 mA or 3 mA (DC). Inverse parallel SCRs provide commutating dV/dt greater than 10 kV/ μ s.

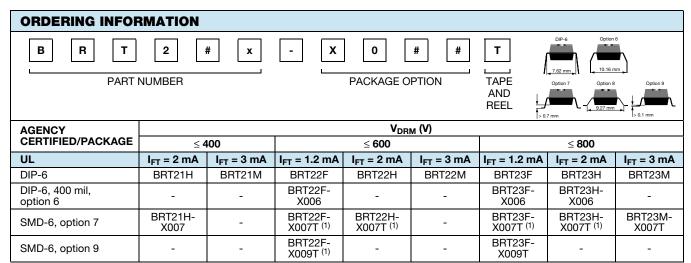
The zero cross line voltage detection circuit consists of two MOSFETS and a photodiode.

The BRT21, BRT22, BRT23 product family isolates low-voltage logic from 120, 230, and 380 VAC lines to control resistive, inductive or capacitive loads including motors, solenoids, high current thyristors or TRIAC and relays.

FEATURES

- High input sensitivity I_{FT} = 1 mA
- I_{TRMS} = 300 mA
- High static dV/dt 10 000 V/µs
- Electrically insulated between input and output circuit

Microcomputer compatible


- Trigger current
 - (I_{FT} < 1.2 mA) BRT22**F**, BRT23**F**
 - (I_{FT} < 2 mA) BRT21**H**, BRT22**H**, BRT23**H**
 - (I_{FT} < 3 mA) BRT21**M**, BRT22**M**, BRT23**M**
- Available surface mount an^d on tape and reel
- Zero voltage crossing detector
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Industrial controls
- Office equipment
- Consumer appliances

AGENCY APPROVALS

- UL 1577
- cUL 1577
- DIN EN 60747-5-5 (VDE 0884-5) available with option 1

Rev. 1.9, 11-Jan-2019 **1** Document Number: 83690

www.vishay.com

Vishay Semiconductors

AGENCY	V _{DRM} (V)							
CERTIFIED/PACKAGE	≤ 400		≤ 600			≤ 800		
UL, VDE	I _{FT} = 2 mA	I _{FT} = 3 mA	I _{FT} = 1.2 mA	I _{FT} = 2 mA	I _{FT} = 3 mA	I _{FT} = 1.2 mA	I _{FT} = 2 mA	I _{FT} = 3 mA
DIP-6	-	-	BRT22F- X001	BRT22H- X001	-	-	BRT23H- X001	-
DIP-6, option 6	BRT21H- X016	BRT21M- X016	BRT22F- X016	BRT22H- X016	BRT22M- X016	-	BRT22H- X016	BRT23M- X016
SMD-6, option 7	-	-	BRT22F- X017T	BRT22H- X017 ⁽¹⁾	-	-	-	-
SMD-6, option 8	-	-	-	-	-	-	BRT23H- X018T	-

Note

⁽¹⁾ Also available in tube, do not put T on the end

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT	
INPUT						
Reverse voltage	I _R = 10 μA		V _R	6	V	
Forward current			I _F	60	mA	
Surge current			I _{FSM}	2.5	Α	
Power dissipation			P _{diss}	100	mW	
Derate from 25 °C				1.33	mW/°C	
OUTPUT						
Peak off-state voltage		BRT21	V_{DRM}	400	V	
		BRT22	V_{DRM}	600	V	
		BRT23	V_{DRM}	800	V	
On state RMS current			I _{TRM}	300	mA	
Single cycle surge current				3	Α	
Power dissipation			P _{diss}	600	mW	
Derate from 25 °C				6.6	mW/°C	
COUPLER						
Storage temperature range			T _{stg}	-40 to +150	°C	
Ambient temperature range			T _{amb}	-40 to +100	°C	
Soldering temperature	Max. ≤ 10 s dip soldering ≥ 0.5 mm from case bottom		T _{sld}	260	°C	

Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT							
Forward voltage	I _F = 10 mA		V _F	-	1.16	1.35	V
Reverse current	V _R = 6 V		I _R	-	0.1	10	μΑ
Capacitance	f = 1 MHz, V _F = 0 V		Co	-	25	-	pF
Thermal resistance, junction to ambient			R _{thJA}	-	750	-	K/W
OUTPUT	<u>'</u>						
	I _{D(RMS)} = 100 μA	BRT21		-	400	-	
Peak off-state voltage		BRT22	V_{DM}	-	600	-	V
		BRT23	-	-	800	-	
Off-state current	$V_D = V_{DRM}, T_{amb} = 100 ^{\circ}C, I_F = 0 mA$		I _{D(RMS)}	-	10	100	μΑ
On-state voltage	I _T = 300 mA		V_{TM}	-	1.7	3	V
On-state current	PF = 1, V _{T(RMS)} = 1.7 V		I _{TM}	-	-	300	mA
Surge (non-repetitive), on-state current	f = 50 Hz		I _{TSM}	-	-	3	Α
			$\Delta I_{FT1}/\Delta T_{j}$	-	7	14	μΑ/K
Trigger current temp. gradient			$\Delta I_{FT2}/\Delta T_{j}$	-	7	14	μΑ/K
Inhibit voltage temp. gradient			$\Delta V_{DINH}/\Delta T_{j}$	-	-20	-	mV/K
Off-state current in inhibit state	$I_F = I_{FT1}, V_{DRM}$		I _{DINH}	-	50	200	μΑ
Holding current			I _H	-	65	500	μΑ
Latching current	V _T = 2.2 V		ΙL	-	5	-	mA
Zero cross inhibit voltage	I _F = rated I _{FT}		V _{IH}	-	15	25	V
OUTPUT (continued)							
Turn-on time	$V_{RM} = V_{DM} = V_{D(RMS)}$		t _{on}	-	35	-	μs
Turn-off time	PF = 1, I _T = 300 mA		t _{off}	-	50	-	μs
Ouities alors of vise of off state wells as	$V_D = 0.67 V_{DRM}, T_j = 25 ^{\circ}C$		dV/dt _{cr}	10 000	-	-	V/µs
Critical rate of rise of off-state voltage	V _D = 0.67 V _{DRM} , T _j = 80 °C		dV/dt _{cr}	5000	-	-	V/µs
Critical rate of rise of voltage at current commutation	$V_D = 230 V_{RMS},$ $I_D = 300 \text{ mA}_{RMS}, T_j = 25 \text{ °C}$		dV/dt _{crq}	-	8	-	V/µs
	$V_D = 230 \text{ V}_{RMS},$ $I_D = 300 \text{ mA}_{RMS}, T_j = 85 \text{ °C}$		dV/dt _{crq}	-	7	-	V/µs
Critical rate of rise of on-state at current commutation	$V_D = 230 V_{RMS},$ $I_D = 300 \text{ mA}_{RMS}, T_j = 25 \text{ °C}$		dl/dt _{crq}	-	12	-	A/ms
Thermal resistance, junction-to-ambient			R _{thJA}	-	125	-	K/W
COUPLER							
Critical rate of rise of coupled input / output voltage	$I_T = 0 A$, $V_{RM} = V_{DM} = V_{D(RMS)}$		dV _{IO} /dt	-	10 000	-	V/µs
Common mode coupling capacitance			C _{CM}	-	0.01	-	pF
Capacitance (input to output)	f = 1 MHz, V _{IO} = 0 V		C _{IO}	-	0.8	-	pF
	V _D = 5 V, F - versions		I _{FT}	-	-	1.2	mA
Trigger current	V _D = 5 V, H - versions		I _{FT}	-	-	2	mA
	V _D = 5 V, M - versions		I _{FT}	-	-	3	mA

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		40 / 100 / 21	
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group IIIa	CTI	175	
Maximum rated withstanding isolation voltage	According to UL1577, t = 1 min	V _{ISO}	4420	V_{RMS}
Tested withstanding isolation voltage	According to UL1577, t = 1 s	V _{ISO}	5300	V_{RMS}
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V _{IOTM}	6000	V_{peak}
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V _{IORM}	630	V _{peak}
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω
Output safety power		P _{SO}	200	mW
Input safety current		I _{SI}	400	mA
Input safety temperature		T _S	175	°C
Creepage distance	DIP-6; SMD-6, option 7;		≥ 7	mm
Clearance distance	SMD-6 option 9		≥ 7	mm
Creepage distance	DID 6 antion 6: CMD 6 antion 9		≥8	mm
Clearance distance	DIP-6, option 6; SMD-6, option 8		≥ 8	mm
Insulation thickness		DTI	≥ 0.4	mm

Note

• As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

POWER FACTOR CONSIDERATIONS

A snubber is not needed to eliminate false operation of the TRIAC driver because of the high static and commutating dV/dt with loads between 1.0 and 0.8 power factors. When inductive loads with power factors less than 0.8 are being driven, include a RC snubber or a single capacitor directly across the device to damp the peak commutating dV/dt spike. Normally a commutating dV/dt causes a turning-off device to stay on due to the stored energy remaining in the turning-off device.

But in the case of a zero voltage crossing optotriac, the commutating dV/dt spikes can inhibit one half of the TRIAC from turning on. If the spike potential exceeds the inhibit voltage of the zero cross detection circuit, half of the TRIAC will be heldoff and not turn-on. This hold-off condition can be eliminated by using a snubber or capacitor placed directly across the optotriac as shown in figure 1. Note that the value of the capacitor increases as a function of the load current.

The hold-off condition also can be eliminated by providing a higher level of LED drive current. The higher LED drive provides a larger photocurrent which causes the phototransistor to turn-on before the commutating spike has activated the zero cross network. Figure 2 shows the relationship of the LED drive for power factors of less than 1.0. The curve shows that if a device requires 1.5 mA for a resistive load, then 1.8 times 2.7 mA) that amount would be required to control an inductive load whose power factor is less than 0.3.

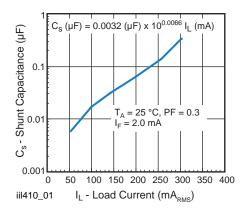


Fig. 1 - Shunt Capacitance vs. Load Current

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

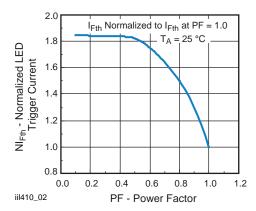


Fig. 2 - Normalized LED Trigger Current vs. Power Factor

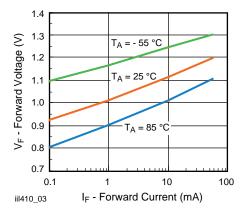


Fig. 3 - Forward Voltage vs. Forward Current

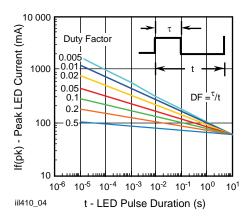


Fig. 4 - Peak LED Current vs. Duty Factor, τ

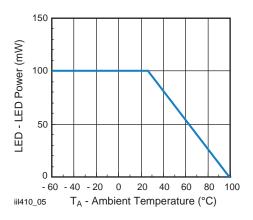


Fig. 5 - Maximum LED Power Dissipation

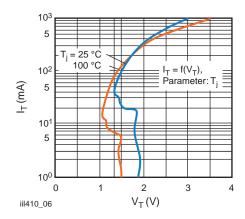


Fig. 6 - Typical Output Characteristics

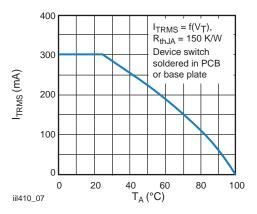


Fig. 7 - Current Reduction

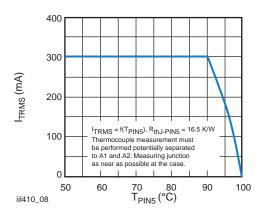


Fig. 8 - Current Reduction

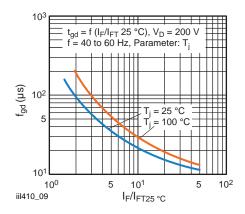


Fig. 9 - Typical Trigger Delay Time

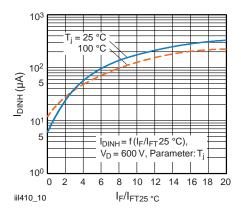


Fig. 10 - Typical Inhibit Current

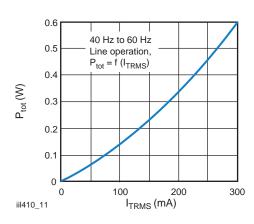


Fig. 11 - Power Dissipation 40 Hz to 60 Hz Line Operation

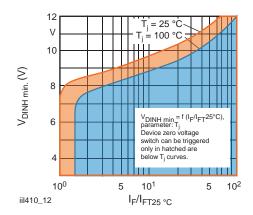


Fig. 12 - Typical Static Inhibit Voltage Limit

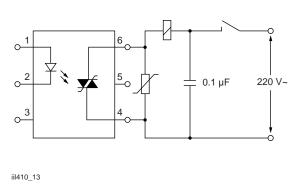


Fig. 13 - Apply a Capacitor to the Supply Pins at the Load-Side

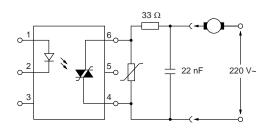
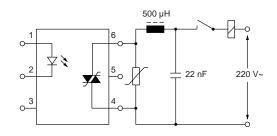
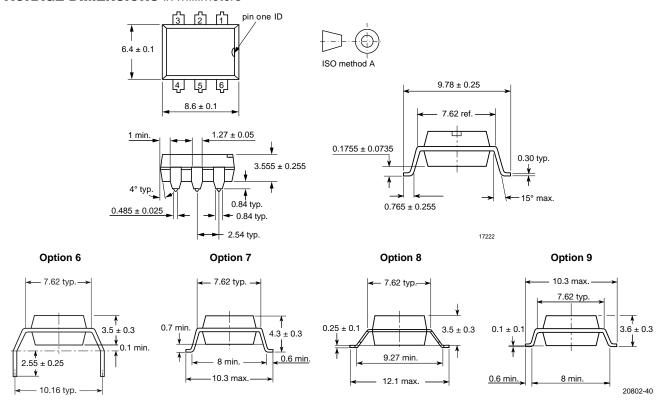



Fig. 14 - Connect a Series Resistor to the Output and Bridge Both by a Capacitor

iil410_15


Fig. 15 - Connect a Choke of Low Winding Cap. in Series, e.g., a Ringcore Choke, with Higher Load Currents

TECHNICAL INFORMATION

iil410_14

See Application Note for additional information.

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (example)

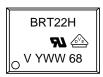


Fig. 16 - Example of BRT22H-X017

Notes

- "YWW" is the date code marking (Y = year code, WW = week code)
- VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking

SOLDER PROFILES

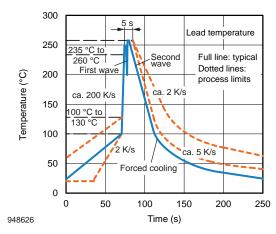


Fig. 17 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP Devices

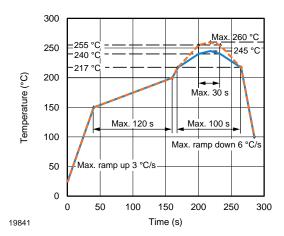


Fig. 18 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triac & SCR Output Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

IL4218-X019 MOC3063S-TA IL4108-X017 IL410-X019T ILD207-X001T ILD615-1X007T VO2223-X001 VO3063-X017T VO4254H

WPPCT-N1066A WPPCT-N1566A WPPCT-Z546D 523170E VO4256H-X007T VO4256D-X007T VO4254M VO3063-X016 VO3062
X017T WPPCT-Z546A WPPCT-Z1046D WPPCT-Z1046A WPPCT-N566D WPPCT-N566A WPPCT-N1566D IL4108-X009T

FODM3053V_NF098 VO4258D VO4256D VO4257M VO4156D-X007T VO4154D-X007T VOM160R-X001T TLP3082(S,C,F)

VO4156H-X006 VO4158H-X017T IL4116-X009T IL4208-X017T TLP3083(TP1,F MOC3071SM tlp548j MOC3063STA1-V

TLP267J(TPL,E IL4218-X017 SFH690C-X001T IL410-X017 IL410-X001 VOM160P-X001T IL4116-X007 IL4117-X007 VO4258D-X007T