Optocoupler, Phototriac Output, Zero Crossing

*Zero crossing circuit

DESCRIPTION

The BRT21, BRT22, BRT23 product family consists of AC switch optocouplers with zero voltage detectors with two electrically insulated lateral power ICs which integrate a thyrister system, a photo detector and noise suppression at the output and an IR GaAs diode input.
High input sensitivity is achieved by using an emitter follower phototransistor and a SCR predriver resulting in an LED trigger current of less than 2 mA or 3 mA (DC). Inverse parallel SCRs provide commutating dV/dt greater than $10 \mathrm{kV} / \mu \mathrm{s}$.
The zero cross line voltage detection circuit consists of two MOSFETS and a photodiode.
The BRT21, BRT22, BRT23 product family isolates low-voltage logic from 120, 230, and 380 VAC lines to control resistive, inductive or capacitive loads including motors, solenoids, high current thyristors or TRIAC and relays.

ORDERING INFORMATION								
PART NUMBER			PACKAGE OPTION			TAPE AND REEL		$=\frac{1}{L_{0.1 \mathrm{~mm}}^{\text {onfion } 9}}$
AGENCY CERTIFIED/PACKAGE	$\mathrm{V}_{\text {DRM }}(\mathrm{V})$							
	≤ 400		≤ 600			≤ 800		
UL	$\mathrm{I}_{\mathrm{FT}}=2 \mathrm{~mA}$	$\mathrm{IFT}_{\text {F }}=3 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{FT}}=1.2 \mathrm{~mA}$	$\mathrm{IFT}^{\text {a }} \mathbf{2} \mathrm{mA}$	$\mathrm{IFT}^{\text {a }} \mathbf{3} \mathrm{mA}$	$\mathrm{IFT}^{\text {a }}$ (1.2 mA	$\mathrm{I}_{\mathrm{FT}}=2 \mathrm{~mA}$	$\mathrm{IFT}^{\text {F }} \mathbf{3} \mathrm{mA}$
DIP-6	BRT21H	BRT21M	BRT22F	BRT22H	BRT22M	BRT23F	BRT23H	BRT23M
DIP-6, 400 mil , option 6	-	-	$\begin{gathered} \hline \text { BRT22F- } \\ \text { X006 } \end{gathered}$	-	-	$\begin{gathered} \hline \text { BRT23F- } \\ \text { X006 } \end{gathered}$	$\begin{gathered} \hline \text { BRT23H- } \\ \text { X006 } \end{gathered}$	-
SMD-6, option 7	$\begin{gathered} \hline \text { BRT21H- } \\ \text { X007 } \\ \hline \end{gathered}$	-	$\begin{aligned} & \hline \text { BRT22F- } \\ & \text { X007T }{ }^{(1)} \end{aligned}$	$\begin{aligned} & \hline \text { BRT22H- } \\ & \text { X007T }{ }^{(1)} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline \text { BRT23F- } \\ & \text { X007T }{ }^{(1)} \end{aligned}$	$\begin{aligned} & \hline \text { BRT23H- } \\ & \text { X007T }{ }^{(1)} \end{aligned}$	$\begin{gathered} \hline \text { BRT23M- } \\ \text { X007T } \end{gathered}$
SMD-6, option 9	-	-	$\begin{aligned} & \hline \text { BRT22F- } \\ & \text { X009T }{ }^{(1)} \end{aligned}$	-	-	$\begin{aligned} & \hline \text { BRT23F- } \\ & \text { X009T } \end{aligned}$	-	-

AGENCY CERTIFIED/PACKAGE	$\mathrm{V}_{\text {DRM }}(\mathrm{V})$							
	≤ 400		≤ 600			≤ 800		
UL, VDE	$\mathrm{I}_{\mathrm{FT}}=2 \mathrm{~mA}$	$\mathrm{IFT}^{\text {F }} \mathbf{3} \mathrm{mA}$	$\mathrm{IFT}^{\text {F }} \mathbf{1 . 2} \mathrm{mA}$	$\mathrm{IFT}^{\text {= }} \mathbf{2} \mathbf{~ m A}$	$\mathrm{IFT}^{\text {F }} \mathbf{3} \mathrm{mA}$	$\mathrm{I}_{\mathrm{FT}}=1.2 \mathrm{~mA}$	$\mathrm{IFT}^{\text {a }} \mathbf{2} \mathrm{mA}$	$\mathrm{IFT}^{\text {O }} \mathbf{3} \mathrm{mA}$
DIP-6	-	-	$\begin{gathered} \hline \text { BRT22F- } \\ \text { X001 } \end{gathered}$	$\begin{gathered} \hline \text { BRT22H- } \\ \text { X001 } \end{gathered}$	-	-	$\begin{gathered} \hline \text { BRT23H- } \\ \text { X001 } \end{gathered}$	-
DIP-6, option 6	$\begin{gathered} \text { BRT21H- } \\ \text { X016 } \end{gathered}$	$\begin{gathered} \text { BRT21M- } \\ \text { X016 } \end{gathered}$	$\begin{gathered} \hline \text { BRT22F- } \\ \text { X016 } \end{gathered}$	$\begin{gathered} \text { BRT22H- } \\ \text { X016 } \end{gathered}$	$\begin{gathered} \text { BRT22M- } \\ \text { X016 } \end{gathered}$	-	$\begin{gathered} \text { BRT22H- } \\ \text { X016 } \end{gathered}$	$\begin{gathered} \text { BRT23M- } \\ \text { X016 } \end{gathered}$
SMD-6, option 7	-	-	$\begin{gathered} \hline \text { BRT22F- } \\ \text { X017T } \end{gathered}$	$\begin{aligned} & \hline \text { BRT22H- } \\ & \text { X017 (1) } \end{aligned}$	-	-	-	-
SMD-6, option 8	-	-	-	-	-	-	$\begin{gathered} \hline \text { BRT23H- } \\ \text { X018T } \end{gathered}$	-

Note

${ }^{(1)}$ Also available in tube, do not put T on the end

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)					
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT
INPUT					
Reverse voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		$\mathrm{V}_{\text {R }}$	6	V
Forward current			I_{F}	60	mA
Surge current			$\mathrm{I}_{\text {FSM }}$	2.5	A
Power dissipation			$\mathrm{P}_{\text {diss }}$	100	mW
Derate from $25^{\circ} \mathrm{C}$				1.33	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
OUTPUT					
Peak off-state voltage		BRT21	$\mathrm{V}_{\text {DRM }}$	400	V
		BRT22	$\mathrm{V}_{\text {DRM }}$	600	V
		BRT23	$\mathrm{V}_{\text {DRM }}$	800	V
On state RMS current			$\mathrm{I}_{\text {TRM }}$	300	mA
Single cycle surge current				3	A
Power dissipation			$\mathrm{P}_{\text {diss }}$	600	mW
Derate from $25^{\circ} \mathrm{C}$				6.6	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
COUPLER					
Storage temperature range			$\mathrm{T}_{\text {stg }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Ambient temperature range			$\mathrm{T}_{\text {amb }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Soldering temperature	Max. ≤ 10 s dip soldering $\geq 0.5 \mathrm{~mm}$ from case bottom		$\mathrm{T}_{\text {sld }}$	260	${ }^{\circ} \mathrm{C}$

Note

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT							
Forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		V_{F}	-	1.16	1.35	V
Reverse current	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$		I_{R}	-	0.1	10	$\mu \mathrm{A}$
Capacitance	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		C_{0}	-	25	-	pF
Thermal resistance, junction to ambient			$\mathrm{R}_{\mathrm{thJA}}$	-	750	-	K/W
OUTPUT							
Peak off-state voltage	$\mathrm{I}_{\mathrm{D}(\mathrm{RMS})}=100 \mu \mathrm{~A}$	BRT21	$V_{\text {DM }}$	-	400	-	V
		BRT22		-	600	-	
		BRT23		-	800	-	
Off-state current	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }}, \mathrm{T}_{\text {amb }}=100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$		$\mathrm{I}_{\mathrm{D} \text { (RMS) }}$	-	10	100	$\mu \mathrm{A}$
On-state voltage	$\mathrm{I}_{\mathrm{T}}=300 \mathrm{~mA}$		$\mathrm{V}_{\text {TM }}$	-	1.7	3	V
On-state current	$\mathrm{PF}=1, \mathrm{~V}_{\text {T(RMS })}=1.7 \mathrm{~V}$		$\mathrm{I}_{\text {TM }}$	-	-	300	mA
Surge (non-repetitive), on-state current	$\mathrm{f}=50 \mathrm{~Hz}$		$\mathrm{I}_{\text {TSM }}$	-	-	3	A
Trigger current temp. gradient			$\Delta \mathrm{l}_{\mathrm{FT} 1} / \Delta \mathrm{T}_{\mathrm{j}}$	-	7	14	$\mu \mathrm{A} / \mathrm{K}$
			$\Delta \mathrm{l}_{\mathrm{FT} 2} / \Delta \mathrm{T}_{\mathrm{j}}$	-	7	14	$\mu \mathrm{A} / \mathrm{K}$
Inhibit voltage temp. gradient			$\Delta \mathrm{V}_{\text {DINH }} / \Delta \mathrm{T}_{\mathrm{j}}$	-	-20	-	mV / K
Off-state current in inhibit state	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{FT} 1}, \mathrm{~V}_{\text {DRM }}$		I DINH	-	50	200	$\mu \mathrm{A}$
Holding current			I_{H}	-	65	500	$\mu \mathrm{A}$
Latching current	$\mathrm{V}_{\mathrm{T}}=2.2 \mathrm{~V}$		I_{L}	-	5	-	mA
Zero cross inhibit voltage	$\mathrm{I}_{\mathrm{F}}=$ rated I_{FT}		V_{IH}	-	15	25	V
OUTPUT (continued)							
Turn-on time	$\mathrm{V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=\mathrm{V}_{\mathrm{D}(\mathrm{RMS})}$		$\mathrm{t}_{\text {on }}$	-	35	-	$\mu \mathrm{s}$
Turn-off time	$\mathrm{PF}=1, \mathrm{I}_{\mathrm{T}}=300 \mathrm{~mA}$		$\mathrm{t}_{\text {off }}$	-	50	-	$\mu \mathrm{s}$
Critical rate of rise of off-state voltage	$\mathrm{V}_{\mathrm{D}}=0.67 \mathrm{~V}_{\text {DRM }}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		$\mathrm{dV} / \mathrm{dt}_{\mathrm{cr}}$	10000	-	-	V/us
	$\mathrm{V}_{\mathrm{D}}=0.67 \mathrm{~V}_{\text {DRM }}, \mathrm{T}_{\mathrm{j}}=80^{\circ} \mathrm{C}$		$\mathrm{dV} / \mathrm{dt}_{\mathrm{cr}}$	5000	-	-	V/ $/ \mathrm{s}$
Critical rate of rise of voltage at current commutation	$\begin{gathered} V_{D}=230 V_{R M S}, \\ I_{D}=300 \mathrm{~mA}_{R M S}, T_{j}=25^{\circ} \mathrm{C} \end{gathered}$		$\mathrm{dV} / \mathrm{dt}_{\text {cra }}$	-	8	-	V/us
	$\begin{gathered} V_{D}=230 V_{R M S}, \\ I_{D}=300 \mathrm{~mA}_{R M S}, T_{j}=85^{\circ} \mathrm{C} \end{gathered}$		$\mathrm{dV} / \mathrm{dt}_{\text {cra }}$	-	7	-	V/us
Critical rate of rise of on-state at current commutation	$\begin{gathered} V_{D}=230 V_{R M S}, \\ I_{D}=300 \mathrm{~mA}_{\text {RMS }}, T_{j}=25^{\circ} \mathrm{C} \end{gathered}$		$\mathrm{dl} / \mathrm{dt}_{\text {cra }}$	-	12	-	A/ms
Thermal resistance, junction-to-ambient			$\mathrm{R}_{\mathrm{thJA}}$	-	125	-	K/W
COUPLER							
Critical rate of rise of coupled input / output voltage	$\mathrm{I}_{\mathrm{T}}=0 \mathrm{~A}, \mathrm{~V}_{\mathrm{RM}}=\mathrm{V}_{\mathrm{DM}}=\mathrm{V}_{\mathrm{D}(\mathrm{RMS})}$		$\mathrm{dV}_{10} / \mathrm{dt}$	-	10000	-	V/us
Common mode coupling capacitance			C_{CM}	-	0.01	-	pF
Capacitance (input to output)	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {lO }}=0 \mathrm{~V}$		ClO_{10}	-	0.8	-	pF
Trigger current	$\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{~F}$ - versions		$\mathrm{I}_{\text {FT }}$	-	-	1.2	mA
	$\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{H}$ - versions		I_{FT}	-	-	2	mA
	$\mathrm{V}_{\mathrm{D}}=5 \mathrm{~V}, \mathrm{M}$ - versions		$\mathrm{I}_{\text {FT }}$	-	-	3	mA

Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements

SAFETY AND INSULATION RATINGS				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		40/100 / 21	
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group Illa	CTI	175	
Maximum rated withstanding isolation voltage	According to UL1577, $\mathrm{t}=1 \mathrm{~min}$	$\mathrm{V}_{\text {ISO }}$	4420	$\mathrm{V}_{\text {RMS }}$
Tested withstanding isolation voltage	According to UL1577, $\mathrm{t}=1 \mathrm{~s}$	$\mathrm{V}_{\text {ISO }}$	5300	$\mathrm{V}_{\text {RMS }}$
Maximum transient isolation voltage	According to DIN EN 60747-5-5	$\mathrm{V}_{\text {IOTM }}$	6000	$V_{\text {peak }}$
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	VIORM	630	$V_{\text {peak }}$
Isolation resistance	$\mathrm{V}_{10}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{12}$	Ω
	$\mathrm{V}_{\text {IO }}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=100^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{11}$	Ω
Output safety power		$\mathrm{P}_{\text {so }}$	200	mW
Input safety current		IS^{\prime}	400	mA
Input safety temperature		$\mathrm{T}_{\text {S }}$	175	${ }^{\circ} \mathrm{C}$
Creepage distance	DIP-6; SMD-6, option 7; SMD-6 option 9		≥ 7	mm
Clearance distance			≥ 7	mm
Creepage distance	DIP-6, option 6; SMD-6, option 8		≥ 8	mm
Clearance distance			≥ 8	mm
Insulation thickness		DTI	≥ 0.4	mm

Note

- As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

POWER FACTOR CONSIDERATIONS

A snubber is not needed to eliminate false operation of the TRIAC driver because of the high static and commutating dV/dt with loads between 1.0 and 0.8 power factors. When inductive loads with power factors less than 0.8 are being driven, include a RC snubber or a single capacitor directly across the device to damp the peak commutating $\mathrm{dV} / \mathrm{dt}$ spike. Normally a commutating dV/dt causes a turning-off device to stay on due to the stored energy remaining in the turning-off device.
But in the case of a zero voltage crossing optotriac, the commutating dV/dt spikes can inhibit one half of the TRIAC from turning on. If the spike potential exceeds the inhibit voltage of the zero cross detection circuit, half of the TRIAC will be heldoff and not turn-on. This hold-off condition can be eliminated by using a snubber or capacitor placed directly across the optotriac as shown in figure 1 . Note that the value of the capacitor increases as a function of the load current.
The hold-off condition also can be eliminated by providing a higher level of LED drive current. The higher LED drive provides a larger photocurrent which causes the phototransistor to turn-on before the commutating spike has activated the zero cross network. Figure 2 shows the relationship of the LED drive for power factors of less than 1.0. The curve shows that if a device requires 1.5 mA for a resistive load, then 1.8 times 2.7 mA) that amount would be required to control an inductive load whose power factor is less than 0.3.

TYPICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 2 - Normalized LED Trigger Current vs. Power Factor

Fig. 3 - Forward Voltage vs. Forward Current

Fig. 4 - Peak LED Current vs. Duty Factor, τ

Fig. 5 - Maximum LED Power Dissipation

Fig. 6 - Typical Output Characteristics

Fig. 7 - Current Reduction

Vishay Semiconductors

Fig. 8 - Current Reduction

Fig. 9 - Typical Trigger Delay Time

Fig. 10 - Typical Inhibit Current

Fig. 11 - Power Dissipation 40 Hz to 60 Hz Line Operation

Fig. 12 - Typical Static Inhibit Voltage Limit

iil410_13

Fig. 13 - Apply a Capacitor to the Supply Pins at the Load-Side

iil410_14
Fig. 14 - Connect a Series Resistor to the Output and Bridge Both by a Capacitor

iil410_15
Fig. 15 - Connect a Choke of Low Winding Cap. in Series, e.g., a Ringcore Choke, with Higher Load Currents

TECHNICAL INFORMATION

See Application Note for additional information.
PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (example)

Fig. 16 - Example of BRT22H-X017

Notes

- "YWW" is the date code marking ($\mathrm{Y}=$ year code, WW = week code)
- VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking

Vishay Semiconductors

SOLDER PROFILES

Fig. 17 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2
Floor life: unlimited
Conditions: $\mathrm{T}_{\mathrm{amb}}<30^{\circ} \mathrm{C}, \mathrm{RH}<85 \%$
Moisture sensitivity level 1, according to J-STD-020

Fig. 18 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :
6N136F PS8502L2-AX ACNW261L-000E ACPL-344JT-000E ACPL-K49T-500E ACPL-K75T-000E ACPL-W21L-560E ACPL-K44T-
500E TLP187(TPL,E(T TLP2601(TP1,F) 610737H 6N137A-X001 6N137A-X017T 6N139-X007T HCPL2630M HCPL2731SM
TLP555(F) HCPL2630SM PS2841-4A-F3-AX PS9817A-1-F3-AX PS9821-2-F3-AX ORPC-817D ORPC-817M/C ORPC-817M/B PT1751C/L129(BIN2) TLP521-4GBSM UMW817C 6N137S1(TA) TLP521GB TLP521GB-S PS2501 PS2501-S TLP785GB TLP785GB-S LTV-214-G TLP2766A(E TLP2766A(LF4,E LCR-0202 EL814S1(TA)-V PC817X4NSZ2B CYPC817 OR-MOC3023 TLP267J(TPL,E(T TLP109(TPL,E(O EL2514S1(TU)(CLW)-G EL816S2(C)(TU)-F EL814S(A)(TU) TLP281-4 MOC3023M ACPL-K49T-060E

