Vishay Beyschlag

High Pulse Load Carbon Film Leaded Resistors

CBB 0207 leaded resistors with advanced pulse load capability, are the perfect choice for circuitries exposed to high levels of electromagnetic interference or electrostatic discharge. The resistors can also be used to protect the circuitry of signal and mains input lines from surge pulses. Applications are in all fields of automotive, telecommunication and industrial equipment.

METRIC SIZE			
DIN	0207		
CECC	В		

FEATURES

 Special carbon film technology for maximum heat stress capability

• Up to 6 kV or 140 W pulse load capability

• Resistance range: 10 Ω to 1.5 M Ω

- Lead (Pb)-free solder contacts
- Pure tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes
- Compliant to RoHS directive 2002/95/EC

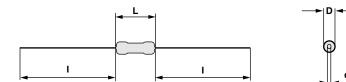
APPLICATIONS

- Automotive
- Telecommunication
- · Industrial equipment

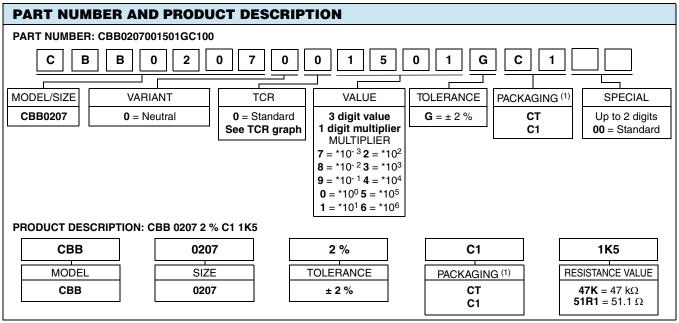
TECHNICAL SPECIFICATIONS				
DESCRIPTION	CBB 0207			
CECC Size	E	В		
Resistance Range	10 Ω to	1.5 ΜΩ		
Resistance Tolerance	± 2	2 %		
Temperature Coefficient	Refer to Temperatu	re Coefficient graph		
Operation Mode	Long term	Standard		
Climatic Category (LCT/UCT/Days)	55/125/56	55/155/56		
Rated Dissipation, P ₇₀	0.4 W	0.6 W		
Operating Voltage, U _{max.} AC/DC	350 V			
Film Temperature	125 °C	155 °C		
Max. Resistance Change at P_{70} for Resistance Range, $\Delta R/R$ max., After:	10 Ω to 100 kΩ			
1000 h	± 1 %	± 2 %		
8000 h	+ 3 %/- 1 %	+ 5 %/- 2 %		
Permissible Voltage Against Ambient:		1		
1 Minute; <i>U</i> _{ins}	500 V			
Continuous	75 V			
Failure Rate: FIT _{observed}	≤ 0.1 x 10 ⁻⁹ /h			

Note

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over
operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.


Document Number: 28736 Revision: 12-Oct-09

High Pulse Load Carbon Film Leaded Resistors


Vishay Beyschlag

DIMENSIONS

DIMENSIONS - Leaded resistor types, mass and relevant physical dimensions						
TYPE D _{max.} (mm) L _{max.} (mm) d _{nom.} (mm) I _{min.} (mm) M _{min.} (mm) MASS (mm)					MASS (mg)	
CBB 0207	2.5	6.3	0.6	28.0	10.0	220

Notes

(1) Please refer to table PACKAGING

• The PART NUMBER is shown to facilitate the introduction of the unified part numbering system for ordering products

PACKAGING				
MODEL	BG	ox		
MODEL	PIECES/BOX	CODE		
CBB 0207	1000 5000	C1 CT		

TOLERANCE AND RESISTANCE RANGE		
TOLERANCE RESISTANCE VALUE (1)		
TOLERANCE	CBB 0207	
± 2 %	10 Ω to 1.5 MΩ	

Note

⁽¹⁾ Resistance values to be selected from E24 series

High Pulse Load Carbon Film Leaded Resistors Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous and dense carbon film is deposited on a high grade ceramic body (85 % Al₂O₃) and conditioned to achieve the desired temperature coefficient. Nickel plated steel termination caps are firmly pressed on the rods. A special laser is used to achieve the target value by smoothly cutting a helical groove in the resistive layer without damaging the ceramics. Connecting wires of electrolytic copper plated with 100% pure tin are welded to the termination caps. The resistors are covered by protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating. Five colour code rings designate the resistance value and tolerance in accordance with IEC 60062.

The result of the determined production is verified by an extensive testing procedure performed on 100 % of the individual resistors. Only accepted products are stuck directly on the adhesive tapes in accordance with IEC 60286-1.

ASSEMBLY

The resistors are suitable for processing on automatic insertion equipment and cutting and bending machines. Excellent solderability is proven, even after extended storage. They are suitable for automatic soldering using wave or dipping. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system. The resistors are completely lead (Pb)-free, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing. All products comply with GADSL (1) and the CEFIC-EECA-EICTA (2) list of legal restrictions on hazardous substances. This includes full compliance with the following directives:

- 2000/53/EC End of Vehicle Life Directive (ELV) and Annex II (ELVII)
- 2002/95/EC Restriction of the use of Hazardous Substances Directive (RoHS)
- 2002/96/EC Waste Electrical and Electrical Equipment Directive (WEEE)


APPROVALS

Where applicable, the resistors are tested in accordance with CECC 40101-806 which refers to EN 60115-1 and EN 140100.

Vishav BEYSCHLAG has achieved "Approval of Manufacturer" in accordance with IEC QC 001002-3, clause 2. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IEC QC 001002-3, clause 6 is granted for the Vishay BEYSCHLAG manufacturing process.

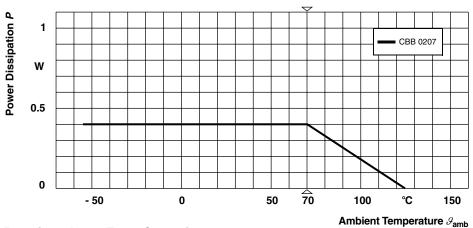
- (1) Global Automotive Declarable Substance List, see www.gadsl.org
- (2) CEFIC (European Chemical Industry Council), EECA (European Electronic Component Manufacturers Association), EICTA (European trade organisation representing the information and communications technology and consumer electronics), see www.eicta.org/index.php?id=1053&id article=340

FUNCTIONAL DESCRIPTION

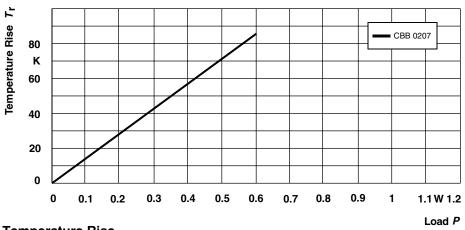
Derating - Standard Operation

Ambient Temperature \mathcal{G}_{amb}

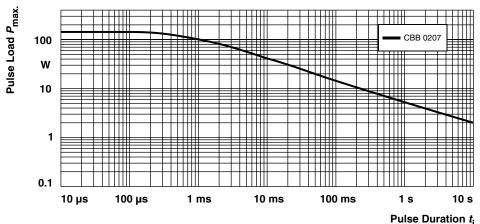
www.vishay.com


244

For technical questions, contact: filmresistorsleaded@vishay.com

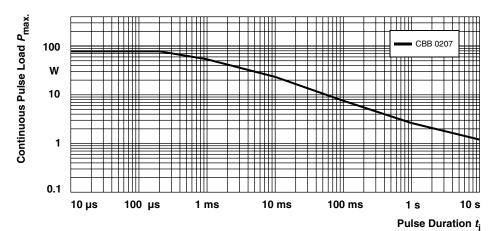

Document Number: 28736

Revision: 12-Oct-09


High Pulse Load Carbon Film Leaded Resistors Vishay Beyschlag

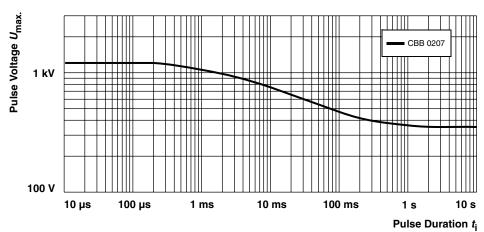
Derating - Long Term Operating

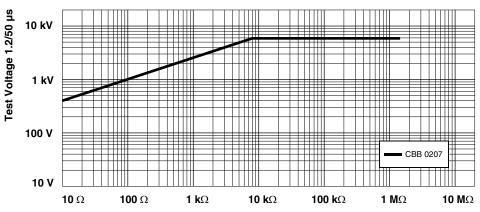
Temperature Rise



Maximum pulse load, single pulse; for permissible resistance change equivalent to 8000 h operation. **Single Pulse**

Vishay Beyschlag


High Pulse Load Carbon Film Leaded Resistors

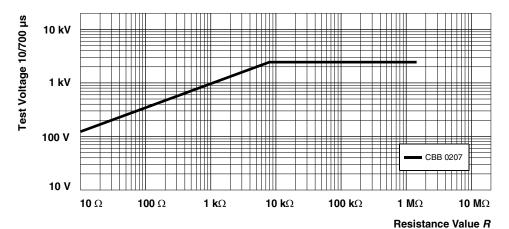

Maximum pulse load, continuous pulses; for permissible resistance change equivalent to 8000 h operation.

Continuous Pulse

Maximum pulse voltage, single and continuous pulses; for permissible resistance change equivalent to 8000 h operation.

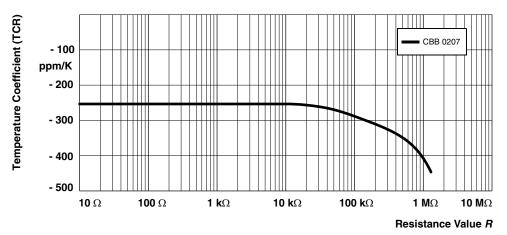
Pulse Voltage

Resistance Value R

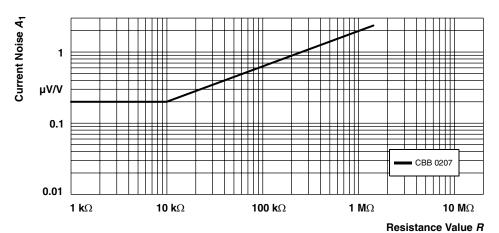

Pulse load rating in accordance with IEC 60115-1, 4.27; 1.2 μ s/50 μ s; 5 pulses at 12 s intervals; for permissible resistance change 0.5 %.

1.2/50 Pulse

Document Number: 28736 Revision: 12-Oct-09


High Pulse Load Carbon Film Leaded Resistors

Vishay Beyschlag



Pulse load rating in accordance with IEC 60115-1, 4.27; 10 μ s/ 700 μ s; 10 pulses at 1 minute intervals; for permissible resistance change 0.5 %.

10/700 Pulse

Temperature Coefficient (TCR)

Current Noise - A₁ in accordance with IEC 60195

Vishay Beyschlag High Pulse Load Carbon Film Leaded Resistors

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification (includes tests)

EN 140100, sectional specification (includes schedule for qualification approval)

CECC 40101-806, detail specification (includes schedule for conformance inspection)

The following table contains the applicable tests selected from the documents listed above.

The tests are carried out in accordance with IEC 60068-2-xx test method and under standard atmospheric conditions in accordance with

IEC 60068-1, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is valid.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

For testing the components are mounted on a test board in accordance with IEC 60115-1, 4.31 unless otherwise specified.

In the Test Procedures and Requirements table only the tests and requirements are listed with reference to the relevant clauses of IEC 60115-1 and IEC 60068-2-xx test methods. A short description of the test procedure is also given.

TEST P	TEST PROCEDURES AND REQUIREMENTS				
IEC 60115-1 CLAUSE	IEC 60068-2-xx TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (△R)	
			Stability for product types:		
			CBB 0207	10 Ω to 1.5 M Ω	
4.5	-	Resistance		± 2 %	
4.8	-	Temperature coefficient	At (20/LCT/20) °C and (20/UCT/20) °C	-	
4.25.1	-	Endurance at 70 °C: standard operation mode	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; 1.5 h ON; 0.5 h OFF 70 °C; 1000 h 70 °C; 8000 h	± (2 % R + 0.05 Ω) ± (4 % R + 0.05 Ω)	
4.25.1	-	Endurance at 70 °C: long term operation mode	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max.}}$; 1.5 h ON; 0.5 h OFF 70 °C; 1000 h 70 °C; 8000 h	± (1 % R + 0.05 Ω) ± (2 % R + 0.05 Ω)	
4.25.3	-	Endurance at upper category temperature	125 °C; 1000 h 155 °C; 1000 h	\pm (2 % R + 0.05 Ω) \pm (4 % R + 0.1 Ω)	
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (1 % R + 0.1 Ω)	
4.23		Climatic sequence:			
4.23.2	2 (Ba)	Dry heat	155 °C; 16 h		
4.23.3	30 (Db)	Damp heat, cyclic	55 °C; 24 h; 90 % to 100 % RH; 1 cycle		
4.23.4	1 (Aa)	Cold	- 55 °C; 2 h		
4.23.5	13 (M)	Low air pressure	8.5 kPa; 2 h; 15 °C to 35 °C		
4.23.6	30 (Db)	Damp heat, cyclic	55 °C; 5 days; 95 % to 100 % RH; 5 cycles	\pm (1 % R + 0.1 Ω) no visible damage	
-	1 (Aa)	Cold	- 55 °C; 2 h	$\pm (0.5 \% R + 0.1 \Omega)$	

Document Number: 28736 www.vishay.com For technical questions, contact: filmresistorsleaded@vishay.com Revision: 12-Oct-09

High Pulse Load Carbon Film Leaded Resistors Vishay Beyschlag

TEST PROCEDURES AND REQUIREMENTS				
IEC 60115-1 CLAUSE	IEC 60068-2-xx TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (△R)
			Stability for product types:	
			CBB 0207	10 Ω to 1.5 M Ω
4.13	-	Short time overload	Room temperature; $U = 2.5 \text{ x } \sqrt{P_{70} \text{ x } R}$ or $U = 2 \text{ x } U_{\text{max.}}$; 5 s	\pm (0.5 % R + 0.1 Ω) no visible damage
4.19	14 (Na)	Rapid change of temperature	30 min at LCT = - 55 °C and 30 min at UCT = 155 °C; 200 cycles	\pm (0.5 % R + 0.05 Ω) no visible damage
4.29	45 (XA)	Component	Isopropyl alcohol + 23 °C;	marking legible;
	10 (70.1)	solvent resistance	toothbrush method	no visible damage
4.18.2	20 (Tb)	Resistance to soldering heat	Unmounted components; (260 ± 3) °C; (10 ± 1) s	\pm (0.5 % R + 0.05 Ω) no visible damage
4.17	20 (Ta)	Solderability	+ 235 °C; 2 s solder bath method SnPb40 + 245 °C; 3 s solder bath method	Good tinning (≥ 95 % covered, no visible damage)
			SnAg3Cu0.5	
4.22	6 (B4)	Vibration	6 h; 10 Hz to 2000 Hz 1.5 mm or 196 m/s ²	± (0.5 % R + 0.05 Ω)
4.16	21 (Ua ₁) 21 (Ub) 21 (Uc)	Robustness of terminations	Tensil, bending and torsion	± (0.5 % R + 0.05 Ω)
4.7	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins}$; 60 s	No flashover or breakdown
4.40	-	Electrostatic discharge (human body model)	IEC 61340-3-1; 3 pos. + 3 neg. 16 kV	± (0.5 % R + 0.05 Ω)

12NC INFORMATION FOR HISTORICAL CODING REFERENCE

- The resistors have a 12-digit numeric code starting with 2312.
- The subsequent 4 digits indicate the resistor type, specification and packaging; see the 12NC table.
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with the 12NC Indicating Resistance Decade table.

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
10 Ω to 99.9 Ω	9
100 Ω to 999 Ω	1
1 k Ω to 9.99 k Ω	2
10 kΩ to 99.9 kΩ	3
100 k Ω to 999 k Ω	4
1 M Ω to 9.99 M Ω	5

12NC Example

The 12NC of a CBB 0207 resistor, value 47 k Ω with \pm 2 % tolerance, supplied on bandolier in a box of 5000 units is: 2312 955 24703.

12NC - Resistor types and packaging				
DESCRIPTION 2312				
DESCRIPTION		BANDOLIER IN BOX		
TYPE	TOL.	C1 1000 units CT 5000 units		
CBB 0207	± 2 %	950 2	955 2	

Resistance ranges printed in bold are preferred TCR/tolerance combinations with optimized availability.

Document Number: 28736 Revision: 12-Oct-09

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Carbon Film Resistors - Through Hole category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

RCFQ-100-5TA RCFQ-100K-5TA RCFQ-10-5TA RCFQ-11-5TA RCFQ-120-5TA RCFQ-120-5TA RCFQ-150K-5TA RCFQ-15K-5TA RCFQ-160-5TA RCFQ-160K-5TA RCFQ-180-5TA RCFQ-18-5TA RCFQ-18K-5TA RCFQ-220-5TA RCFQ-240K-5TA RCFQ-24-5TA RCFQ-270K-5TA RCFQ-27-5TA RCFQ-330K-5TA RCFQ-33K-5TA RCFQ-360-5TA RCFQ-360K-5TA RCFQ-360K-5TA RCFQ-390K-5TA RCFQ-430K-5TA RCFQ-43-5TA RCFQ-47-5TA RCFQ-620-5TA RCFQ-62-5TA RCFQ-680-5TA RCFQ-680K-5TA RCFQ-750-5TA RCFQ-91-5TA RCFQ-91K-5TA 150-04720 OM1625 OMT200L ON2725E LCA0207001004J2200 299-1K/REEL 23ESA473MLA50N CF1/4-8.2M-5% CFB1/2C101J CFB1/2C102J CFR16J1K0 CFR50J8K2 293-22/REEL RCFQ-110-5TA RCFQ-110K-5TA RCFQ-11K-5TA