Optocoupler, Phototransistor Output, with Base Connection

DESCRIPTION

The CNY17 is an optically coupled pair consisting of a gallium arsenide infrared emitting diode optically coupled to a silicon NPN phototransitor.
Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output.
The CNY17 can be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CRT modulation.

FEATURES

- Isolation test voltage $5000 \mathrm{~V}_{\mathrm{RMS}}$
- Long term stability
- Industry standard dual-in-line package
- $\mathrm{V}_{\text {IORM }}=850 \mathrm{~V}$
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

AGENCY APPROVALS

- UL file no. E52744
- cUL tested to CSA 22.2 bulletin 5A
- DIN EN 60747-5-5 (0884-5) available with option 1
- BSI IEC 60950-1:2006 IEC 60065
- FIMKO
- CQC

ORDERING INFORMATION				
N	1 PART NUMBE			
AGENCY CERTIFIED/PACKAGE	CTR (\%)			
cUL, VDE, BSI, FIMKO, CQC	40 to 80	63 to 125	100 to 200	160 to 320
DIP-6	CNY17-1.	CNY17-2.	CNY17-3.	CNY17-4.
DIP-6, 400 mil	CNY17G-1	CNY17G-2	CNY17G-3	CNY17G-4

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Reverse voltage		V_{R}	5	V
Forward current		$\mathrm{I}_{\text {F }}$	60	mA
Surge current	$\mathrm{t} \leq 10 \mu \mathrm{~s}$	$\mathrm{I}_{\text {FSM }}$	3	A
Power dissipation		$\mathrm{P}_{\text {diss }}$	100	mW
OUTPUT				
Collector emitter breakdown voltage		$\mathrm{BV}_{\text {CEO }}$	70	V
Emitter base breakdown voltage		$\mathrm{BV}_{\text {EBO }}$	7	V
Collector current		I_{C}	50	mA
	$\mathrm{t}<1 \mathrm{~ms}$	I_{C}	100	mA
Power dissipation		$\mathrm{P}_{\text {diss }}$	150	mW

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
COUPLER				
Isolation test voltage between emitter and detector referred to climate DIN 50014, part 2, Nov. 74	$\mathrm{t}=1 \mathrm{~min}$	$\mathrm{V}_{\text {ISO }}$	5000	$V_{\text {RMS }}$
Creepage distance (CNY17.)			≥ 7	mm
Clearance distance (CNY17.)			≥ 7	mm
Creepage distance (CNY17G)			≥ 8	mm
Clearance distance (CNY17G)			≥ 8	mm
Isolation thickness between emitter and detector			≥ 0.4	mm
Comparative tracking index per DIN IEC 112/VDE 0303, part 1			250	
Isolation resistance	$\mathrm{V}_{10}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{12}$	Ω
	$\mathrm{V}_{\text {IO }}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=10{ }^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{11}$	Ω
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to + 125	${ }^{\circ} \mathrm{C}$
Operating temperature		$\mathrm{T}_{\text {amb }}$	- 55 to + 100	${ }^{\circ} \mathrm{C}$
Soldering temperature ${ }^{(1)}$	max. 10 s , dip soldering: distance to seating plane $\geq 1.5 \mathrm{~mm}$	$\mathrm{T}_{\text {sld }}$	260	${ }^{\circ} \mathrm{C}$

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.
${ }^{(1)}$ Refer to wave profile for soldering conditions for through hole devices.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT							
Forward voltage	$\mathrm{I}_{\mathrm{F}}=60 \mathrm{~mA}$		V_{F}		1.25	1.65	V
Breakdown voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		V_{BR}	6			V
Reverse current	$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$		I_{R}		0.01	10	$\mu \mathrm{A}$
Capacitance	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		C_{0}		25		pF
Thermal resistance			$\mathrm{R}_{\text {th }}$		750		K/W
OUTPUT							
Collector emitter capacitance	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\mathrm{C}_{\text {CE }}$		5.2		pF
Collector base capacitance	$\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\mathrm{C}_{\text {CB }}$		6.5		pF
Emitter base capacitance	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\mathrm{C}_{\text {EB }}$		7.5		pF
Thermal resistance			$\mathrm{R}_{\text {th }}$		500		K/W
COUPLER							
Collector emitter, saturation voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}$		$\mathrm{V}_{\text {CEsat }}$		0.25	0.4	V
Coupling capacitance			C_{C}		0.6		pF
Collector emitter, leakage current	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	CNY17-1	$\mathrm{I}_{\text {CEO }}$		2	50	nA
		CNY17-2	$\mathrm{I}_{\text {CEO }}$		2	50	nA
		CNY17-3	$\mathrm{I}_{\text {CEO }}$		5	100	nA
		CNY17-4	$\mathrm{I}_{\text {CEO }}$		5	100	nA

Note

- Minimum and maximum values were tested requierements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
$\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{F}}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	CNY17-1	CTR	40		80	\%
		CNY17-2	CTR	63		125	\%
		CNY17-3	CTR	100		200	\%
		CNY17-4	CTR	160		320	\%
	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	CNY17-1	CTR	13	30		\%
		CNY17-2	CTR	22	45		\%
		CNY17-3	CTR	34	70		\%
		CNY17-4	CTR	56	90		\%

Note

- Current transfer ratio and collector-emitter leakage current by dash number ($\mathrm{T}_{\mathrm{amb}}{ }^{\circ} \mathrm{C}$).

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
LINEAR OPERATION (WITHOUT SATURATION)							
Turn-on time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$		$\mathrm{t}_{\text {on }}$		3		$\mu \mathrm{s}$
Rise time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$		t_{r}		2		$\mu \mathrm{s}$
Turn-off time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$		$\mathrm{t}_{\text {off }}$		2.3		$\mu \mathrm{s}$
Fall time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$		t_{f}		2		$\mu \mathrm{s}$
Cut-off frequency	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=75 \Omega$		f_{CO}		250		kHz
SWITCHING OPERATION (WITH SATURATION)							
Turn-on time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	CNY17-1	$\mathrm{t}_{\text {on }}$		3		$\mu \mathrm{s}$
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	CNY17-2	$\mathrm{t}_{\text {on }}$		4.2		$\mu \mathrm{s}$
		CNY17-3	$\mathrm{t}_{\text {on }}$		4.2		$\mu \mathrm{s}$
	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	CNY17-4	$\mathrm{t}_{\text {on }}$		6		$\mu \mathrm{s}$
Rise time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	CNY17-1	t_{r}		2		$\mu \mathrm{s}$
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	CNY17-2	t_{r}		3		$\mu \mathrm{s}$
		CNY17-3	t_{r}		3		$\mu \mathrm{s}$
	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	CNY17-4	t_{r}		4.6		$\mu \mathrm{s}$
Turn-off time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	CNY17-1	$\mathrm{t}_{\text {off }}$		18		$\mu \mathrm{s}$
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	CNY17-2	$\mathrm{t}_{\text {off }}$		23		$\mu \mathrm{s}$
		CNY17-3	$\mathrm{t}_{\text {off }}$		23		$\mu \mathrm{s}$
	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	CNY17-4	$\mathrm{t}_{\text {off }}$		25		$\mu \mathrm{s}$
Fall time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	CNY17-1	t_{f}		11		$\mu \mathrm{s}$
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	CNY17-2	t_{f}		14		$\mu \mathrm{s}$
		CNY17-3	t_{f}		14		$\mu \mathrm{s}$
	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	CNY17-4	t_{f}		15		$\mu \mathrm{s}$

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

icny17_01

Fig. 1 - Linear Operation (without Saturation)

icny17_02

Fig. 1 - Switching Operation (with Saturation)

Fig. 2 - Current Transfer Ratio vs. Diode Current

Fig. 3 - Current Transfer Ratio vs. Diode Current

Fig. 4 - Current Transfer Ratio vs. Diode Current

Fig. 5 - Current Transfer Ratio vs. Diode Current

Fig. 6 - Current Transfer Ratio vs. Diode Current

Fig. 7 - Current Transfer Ratio (CTR) vs. Temperature

Fig. 8 - Transistor Characteristics

Fig. 9 - Output Characteristics

Fig. 10 - Forward Voltage vs. Forward Current

Fig. 11 - Leakage Current vs. Ambient Temperature

Fig. 12 - Saturation Voltage vs. Collector Current and Modulation Depth CNY17-1

Fig. 13 - Saturation Voltage vs. Collector Current and Modulation Depth CNY17-2

Fig. 14 - Saturation Voltage vs.
Collector Current and Modulation Depth CNY17-3

Fig. 15 - Saturation Voltage vs. Collector Current and Modulation Depth CNY17-4

Fig. 16 - Permissible Power Dissipation for Transistor and Diode

PACKAGE DIMENSIONS in millimeters
DIP-6

DIP-6, 400 mil

PACKAGE MARKING

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
LTV-814S-TA LTV-824HS LTV-852S 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561-1-A PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY174 X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

