

Optocoupler, Phototransistor Output, ATEX Certified

DESCRIPTION

The CNY65Exi consists of a phototransistor optically coupled to an infrared-emitting diode in a 4 pin plastic package. The components are mounted opposite one another, with a distance between input and output of > 3.0 mm; meeting the highest of safety requirements.

The CNY65Exi is ATEX certificated for explosive atmospheres according to the Directive 2014/34/EU

AGENCY APPROVALS

• ATEX (Ex):PTB 03 ATEX 2033 U EN 60079-0: 2012 + A11: 2013

EN 60079-11 : 2012 EN 60079-26 : 2015

FEATURES

 ATEX certificate: PTB 03 ATEX 2033 U <u>www.vishay.com/doc?85361</u>

Suitable for intrinsic safe circuits for gas and dust

• Gas safety provision: II (1) G [Ex ia] IIC

• Dust safety provision: II (1) D [Ex ia] IIIC

Conforms to EN 60079-0: 2012 + A11: 2013

 Qualified for continuously, longterm, or frequently dangerous explosive environments, zone 0

Isolation voltage (V_{ISO}) of 11 600 V_{peak} for 1 minute

- Distance from emitter to detector through insulation ≥ 3 mm
- CTR from 50 % to 300 %
- Very low coupling capacity (C_K)
 - 0.3 pF superior noise immunity between input and output pins
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Electronics used in potentially explosive gas and dust environments
 - Safety related process automation and instrumentation
 - Natural gas metering and flow measurement
 - Power and motor switching
 - Power supplies, metering, and data acquisition
 - Lighting and signaling
 - Petrol and grain transport and storage

ORDERING INFORMATION						
C N Y PART NUMBER	6 5 X CTR BIN	PACKAGE C	OPTION	DIP-4		
AGENCY CERTIFIED/PACKAGE	CTR (%)					
ATEX	50 to 300		100 to 200			
DIP-4, HV, high isolation distance	CNY65Exi CNY65BExi					

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	CONDITION	SYMBOL	VALUE	UNIT				
INPUT								
Reverse voltage		V_R	5	V				
Forward current		I _F	75	mA				
Forward surge current	t _p ≤ 10 μs	I _{FSM}	1.5	А				
Power dissipation		P _{diss}	120	mW				
Junction temperature		Tj	100	°C				
OUTPUT	<u>.</u>							
Collector emitter voltage		V_{CEO}	32	V				
Emitter collector voltage		V _{ECO}	7	V				
Collector current		I _C	50	mA				
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA				
Power dissipation		P _{diss}	130	mW				
Junction temperature		Tj	100	°C				
COUPLER	<u>.</u>							
Total power dissipation		P _{tot}	250	mW				
Ambient temperature range		T _{amb}	-55 to +85	°C				
Storage temperature range		T _{stg}	-55 to +100	°C				
Soldering temperature	2 mm from case, t ≤ 10 s	T _{sld}	260	°C				

Note

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability

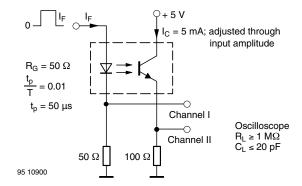
ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward voltage	I _F = 50 mA	V _F	-	1.25	1.6	V		
OUTPUT	•							
Collector emitter voltage	I _C = 1 mA	V _{CEO}	32	-	-	V		
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7	-	-	V		
Collector dark current	$V_{CE} = 20 \text{ V}, I_f = 0, E = 0$	I _{CEO}	-	-	200	nA		
COUPLER								
Isolation resistance	V _{IO} = 1 kV, 40 % relative humidity	R _{IO} (1)	-	10 ¹²	-	Ω		
Collector saturation voltage	I _F = 10 mA, I _C = 1 mA	V _{CEsat}	-	-	0.3	V		
Cut-off frequency	V_{CE} = 5 V, I_F = 10 mA, R_L = 100 Ω	f _c	110	-	-	kHz		
Coupling capacitance	f = 1 MHz	C _k	-	0.3	-	pF		

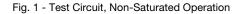
Notes

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements

(1) Related to standard climate 23/50 DIN 50014

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER TEST CONDITION PART SYMBOL MIN. TYP. MAX. UNIT						UNIT	
	V - 5 V I - 10 mA	CNY65Exi	CTR	50	100	300	%
I _O /I _F	$V_{CE} = 5 \text{ V}, I_{F} = 10 \text{ mA}$	CNY65BExi	CTR	100	-	200	%




SAFETY AND INSULATION RATINGS						
PARAMETER	SYMBOL	VALUE	UNIT			
Climatic classification	According to IEC 68 part 1		40 / 85 / 21			
Pollution degree	According to DIN VDE 0109		2			
Comparative tracking index	Insulation group IIIa	CTI	475			
Maximum rated withstanding isolation voltage	t = 1 min	V _{ISO}	8200	V _{RMS}		
Maximum transient isolation voltage		V _{IOTM}	12 000	V _{peak}		
Maximum repetitive peak isolation voltage		V _{IORM}	1450	V _{peak}		
	T_{amb} = 25 °C, V_{IO} = 500 V	R _{IO}	≥ 10 ¹²	Ω		
Isolation resistance	$T_{amb} = 100 ^{\circ}C, V_{IO} = 500 V$	R _{IO}	≥ 10 ¹¹	Ω		
	$T_{amb} = T_S$, $V_{IO} = 500 \text{ V}$	R _{IO}	≥ 10 ⁹	Ω		
Output safety power		P _{SO}	250	mW		
Input safety current		I _{si}	120	mA		
Input safety temperature		T _S	150	°C		
Creepage distance			≥ 14	mm		
Clearance distance			≥ 14	mm		
Insulation thickness		DTI	≥ 3	mm		

Note

According to DIN EN 60747-5-5 (see Fig. 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance
with the safety ratings shall be ensured by means of suitable protective circuits

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Delay time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega, \text{ (see Fig. 1)}$	t _d	-	2.6	-	μs
Rise time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega, \text{ (see Fig. 1)}$	t _r	-	2.4	-	μs
Fall time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega, \text{ (see Fig. 1)}$	t _f	-	2.4	-	μs
Storage time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega, \text{ (see Fig. 1)}$	t _s	-	0.3	-	μs
Turn-on time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega, \text{ (see Fig. 1)}$	t _{on}	-	5	-	μs
Turn-off time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega, \text{ (see Fig. 1)}$	t _{off}	-	3	-	μs
Turn-on time	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega, \text{ (see Fig. 2)}$	t _{on}	=	25	=	μs
Turn-off time	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega, \text{ (see Fig. 2)}$	t _{off}	-	42.5	-	μs

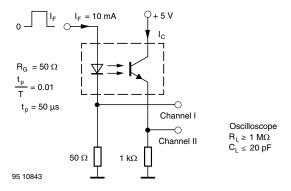


Fig. 2 - Test Circuit, Saturated Operation

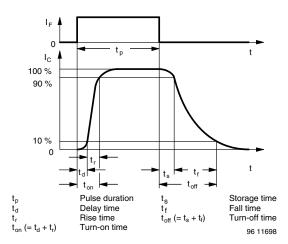


Fig. 3 - Switching Times

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

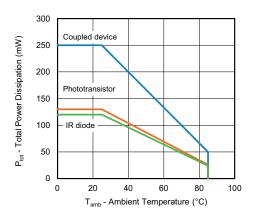


Fig. 4 - Total Power Dissipation vs. Ambient Temperature

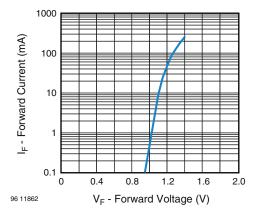


Fig. 5 - Forward Current vs. Forward Voltage

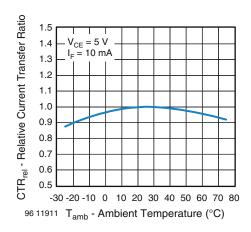


Fig. 6 - Relative Current Transfer Ratio vs.
Ambient Temperature

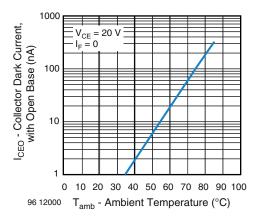


Fig. 7 - Collector Dark Current vs. Ambient Temperature

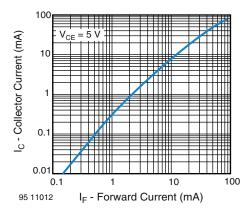


Fig. 8 - Collector Current vs. Forward Current

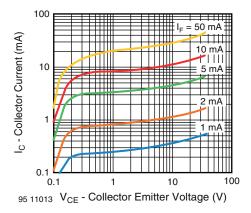


Fig. 9 - Collector Current vs. Collector Emitter Voltage

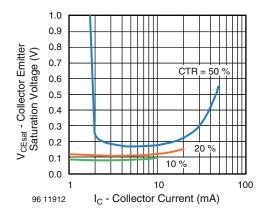


Fig. 10 - Collector Emitter Saturation Voltage vs. Collector Current

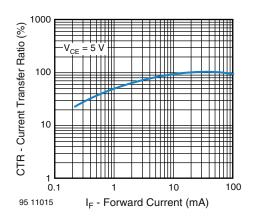


Fig. 11 - Current Transfer Ratio vs. Forward Current

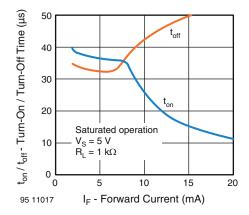


Fig. 12 - Turn-On / Turn-Off Time vs. Forward Current

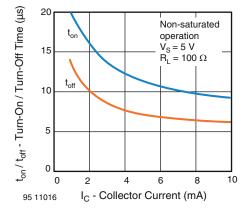
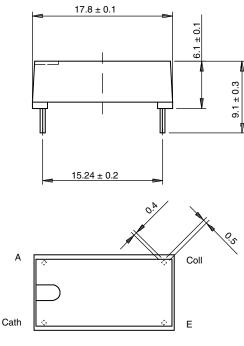
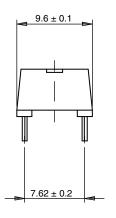



Fig. 13 - Turn-On / Turn-Off Time vs. Collector Current


PACKAGE DIMENSIONS (in millimeters)

Drawing-No.: 6.544-5036.01-1

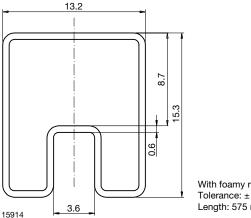
Issue: 2; 10.11.98

14763

technical drawings according to DIN specifications

Weight: ca. 1.40 g Creepage distance: > 14 mm Air path: > 14 mm after mounting on PC board

PACKAGE MARKING (example of CNY65BExi)


Fig. 14 - Top Marking

Theresienstrasse 2 74072 Heilbronn, Germany

Fig. 15 - Side Marking

TUBE INFORMATION						
TYPE	UNITS/TUBE	TUBES/BOX	UNITS/BOX			
CNY65Exi	30	35	1050			

With foamy rubber plugs Tolerance: ± 0.5 mm Length: 575 mm ± 2 mm

Fig. 16 - CNY65Exi

SOLDER PROFILES

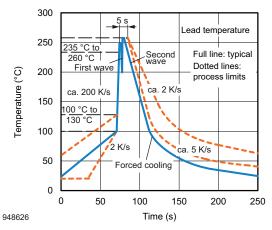


Fig. 17 - Wave Soldering Double Wave Profile According to J-STD-020 for Through-Hole Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D21068AD WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED