Low-Voltage, Low ron, Single SPDT Analog Switch In SC-89 Package

DESCRIPTION

The DG2011 is a low on-resistance, single-pole/doublethrow monolithic CMOS analog switch. It is designed for low voltage applications with guaranteed operation at 2 V . The DG2011 is ideal for portable and battery powered equipment, requiring high performance and efficient use of board space. In additional to the low on-resistance (1.8Ω at 2.7 V), charge injection is less than 10 pC over the entire analog range.
The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.
The DG2011 is built on Vishay Siliconix's low voltage JI2 process. An epitaxial layer prevents latchup.
Break-before-make is guaranteed.
The DG2011 represents a breakthrough in packaging development for analog switching products. The SC-89 package ($1.6 \times 1.6 \mathrm{~mm}^{2}$) - also know as SOT-666 in the industry reduces board spacing by approximately 40% while obtaining performance comparable to SC-70 analog switch devices available today.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100% matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

FEATURES

- Low Voltage Operation (1.8 V to 5.5 V)
- Low On-Resistance - $\mathrm{r}_{\mathrm{ON}}: 1.8 \Omega$ at 2.7 V
- Low Charge Injection
- Low Voltage Logic Compatible
- SC-89 Package ($1.6 \times 1.6 \mathrm{~mm}$)

BENEFITS

- Reduced Power Consumption
- Simple Logic Interface
- High Accuracy
- Reduce Board Space
- Guaranteed 2 V Operation

APPLICATIONS

- Cellular Phones
- Communication Systems
- Portable Test Equipment
- Battery Operated Systems
- Sample and Hold Circuits
- ADC and DAC Applications
- Low Voltage Data Acquisition Systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: Ax
x = Date/Lot Traceability Code

TRUTH TABLE		
Logic	NC	NO
0	ON	OFF
1	OFF	ON

COMMERCIAL ORDERING INFORMATION

Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	SC-89 (SOT-666) with Tape and Reel	DG2011DX-T1**
	SC-89 (SOT-666) Lead (Pb)-free with Tape and Reel	DG2011DX-T1-E3** DG2011DXA-T1-E3

** Note:
DG2011DX-T1 and DG2011DX-T1-E3 are not recommended for new designs.

[^0]
Vishay Siliconix

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $2.15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS (V+ = 2.0 V)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \text { or } 1.6 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{aligned} & \text { Limits } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	r_{ON}	$\begin{gathered} \mathrm{V}+=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.2 \mathrm{~V} / 0.9 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=20 \mathrm{~mA} \end{gathered}$	Room Full		3.5	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	Ω
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=2.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} / 0.5 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	$n A$
	$\mathrm{I}_{\text {COM(off) }}$		Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\text {COM }}$ (on)	$\mathrm{V}+=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.5			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		75	$\begin{aligned} & 110 \\ & 113 \end{aligned}$	$n s$
Turn-Off Time	toff		Room Full		37	$\begin{aligned} & 71 \\ & 76 \end{aligned}$	
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$		Room	1	37		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		7		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-62		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-69		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\mathrm{d}}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}_{+}, \mathrm{f}=1 \mathrm{MHz}$	Room		29		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {ON }}$		Room		85		
Power Supply							
Positive Supply Range	V+	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{+}		1.8		5.5	V
Negative Supply Current	I+				0.01	1.0	$\mu \mathrm{A}$

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V} \text { or } 2.0 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	${ }^{\text {ron }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.9 \mathrm{~V} / 1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=50 \mathrm{~mA} \end{gathered}$	Room Full		1.8	$\begin{aligned} & 2.7 \\ & 2.9 \end{aligned}$	Ω
$\mathrm{r}_{\text {ON }}$ Match	$\mathrm{Ar}_{\mathrm{ON}}$		Room			0.2	
$\mathrm{r}_{\text {ON }}$ Flatness	$\begin{gathered} \hline \mathrm{r}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$		Room		0.2	0.5	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ ${ }^{\mathrm{I}} \mathrm{NC}$ (off)	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	nA
	$\mathrm{I}_{\text {COM(off) }}$		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current ${ }^{\dagger}$	$I_{\text {Com(on) }}$	$\mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \\ \hline \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.6			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{l}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		45	75 77	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$		29	$\begin{aligned} & \hline 59 \\ & 62 \end{aligned}$	
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$		Room	1	16		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		2		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-62		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-68		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		28		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{CoN}^{\text {O }}$		Room		84		
Power Supply							
Power Supply Range	V+			1.8		5.5	V
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					3.3	$\mu \mathrm{W}$

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix
TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

TYPICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Time vs. Temperature and Supply Voltage

Switching Threshold vs. Supply Voltage

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Charge Injection vs. Analog Voltage

Vishay Siliconix

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.
Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply.

