Improved Quad CMOS Analog Switches

DESCRIPTION

The DG201B, DG202B analog switches are highly improved versions of the industry-standard DG201A, DG202. These devices are fabricated in Vishay Siliconix' proprietary silicon gate CMOS process, resulting in lower on-resistance, lower leakage, higher speed, and lower power consumption.

These quad single-pole single-throw switches are designed for a wide variety of applications in telecommunications, instrumentation, process control, computer peripherals, etc. An improved charge injection compensation design minimizes switching transients. The DG201B and DG202B can handle up to $\pm 22 \mathrm{~V}$ input signals, and have an improved continuous current rating of 30 mA . An epitaxial layer prevents latchup.

All devices feature true bi-directional performance in the on condition, and will block signals to the supply voltages in the off condition.

The DG201B is a normally closed switch and the DG202B is a normally open switch. (see Truth Table.)

FEATURES

- $\pm 22 \mathrm{~V}$ supply voltage rating
- TTL and CMOS compatible logic
- Low on-resistance - $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}: 45 \Omega$
- Low leakage - $I_{D(o n)}$: 20 pA
- Single supply operation possible
- Extended temperature range
- Fast switching - t_{ON} : 120 ns
- Low glitching - Q: 1 pC
- Compliant to RoHS Directive 2002/95/EC

BENEFITS

- Wide analog signal range
- Simple logic interface
- Higher accuracy
- Minimum transients
- Reduced power consumption
- Superior to DG201A, DG202
- Space savings (TSSOP)

APPLICATIONS

- Industrial instrumentation
- Test equipment
- Communications systems
- Disk drives
- Computer peripherals
- Portable instruments
- Sample-and-hold circuits

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG201B	DG202B
0	ON	OFF
1	OFF	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

ORDERING INFORMATION		
Temp. Range	Package	Part Number
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	16-pin CerDIP	DG201BAK
		DG202BAK
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	16-pin Plastic DIP	$\begin{gathered} \hline \text { DG201BDJ } \\ \text { DG201BDJ-E3 } \end{gathered}$
		$\begin{gathered} \text { DG202BDJ } \\ \text { DG202BDJ-E3 } \end{gathered}$
	16-pin narrow SOIC	$\begin{gathered} \text { DG201BDY } \\ \text { DG201BDY-E3 } \\ \text { DG201BDY-T1 } \\ \text { DG201BDY-T1-E3 } \end{gathered}$
		$\begin{gathered} \text { DG202BDY } \\ \text { DG202BDY-E3 } \\ \text { DG202BDY-T1 } \\ \text { DG202BDY-T1-E3 } \end{gathered}$
	16-pin TSSOP	$\begin{gathered} \hline \text { DG201BDQ } \\ \text { DG201BDQ-E3 } \\ \text { DG201BDQ-T1 } \\ \text { DG201BDQ-T1-E3 } \end{gathered}$
		$\begin{gathered} \hline \text { DG202BDQ } \\ \text { DG202BDQ-E3 } \\ \text { DG202BDQ-T1 } \\ \text { DG202BDQ-T1-E3 } \end{gathered}$

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Voltages Referenced, V+ to V-		44	V
GND		25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Current (Any terminal)		30	mA
Peak Current S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max.)		100	
Storage Temperature	(AK, DK suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(DJ, DY, DQ suffix)	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	16-pin plastic DIP ${ }^{\text {c }}$	470	mW
	16-pin narrow SOIC and TSSOP ${ }^{\text {d }}$	640	
	16-pin CerDIP ${ }^{\text {e }}$	900	
	LCC-20 ${ }^{\text {f }}$	750	

Notes:

a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
f. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM (typical channel)

Figure 1.

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		-15	15	- 15	15	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room Full	45		$\begin{gathered} 85 \\ 100 \end{gathered}$		$\begin{gathered} \hline 85 \\ 100 \end{gathered}$	Ω
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$ Match	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on }}$		Room	2					
Source Off Leakage Current	$\mathrm{I}_{\mathrm{S} \text { (off) }}$	$V_{S}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	Room Full	± 0.01	$\begin{aligned} & -0.5 \\ & -20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	
Drain Off Leakage Current	$I_{D(\text { (ffi) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{S}= \pm 14 \mathrm{~V}$	Room Full	± 0.01	$\begin{aligned} & -0.5 \\ & -20 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \end{aligned}$	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	nA
Drain On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	Room Full	± 0.02	$\begin{aligned} & -0.5 \\ & -40 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 40 \end{aligned}$	$\begin{gathered} -0.5 \\ -10 \end{gathered}$	$\begin{gathered} 0.5 \\ 10 \end{gathered}$	
Digital Control									
Input Voltage High	$\mathrm{V}_{\text {INH }}$		Full		2.4		2.4		V
Input Voltage Low	$\mathrm{V}_{\text {INL }}$		Full			0.8		0.8	
Input Current	$\mathrm{l}_{\mathrm{INH}}$ or $\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\text {INH }}$ or $\mathrm{V}_{\text {INL }}$	Full		-1	1	-1	1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Room	5					pF
Dynamic Characteristics									
Turn-On Time	${ }^{\text {ton }}$	$\mathrm{V}_{S}=2 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	120		300		300	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	see switching time test circuit	Room Full	65		200		200	ns
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{~V}_{\mathrm{g}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{g}}=0 \Omega \end{gathered}$	Room	1					pC
Source-Off Capacitance	$\mathrm{C}_{\text {S(off) }}$		Room	5					
Drain-Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	5					pF
Channel On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room	16					
Off Isolation	OIRR		Room	90					
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {TALK }}$	$V_{S}=1 \mathrm{~V}_{\mathrm{RMS}}, f=100 \mathrm{kHz}$	Room	95					dB
Power Supply									
Positive Supply Current	I+		Room Full			$\begin{gathered} \hline 50 \\ 100 \end{gathered}$		$\begin{gathered} \hline 50 \\ 100 \end{gathered}$	
Negative Supply Current	I-	$\mathrm{V}_{\text {IN }}=0$ or 5 V	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\mu \mathrm{A}$
Power Supply Range for Continuous Operation	V_{OP}		Full		± 4.5	± 22	± 4.5	± 22	V

SPECIFICATIONS (for Single Supply) ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Specified$\begin{aligned} & \mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{+} \end{aligned}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	12	0	12	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 8 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room Full	90		$\begin{aligned} & 160 \\ & 200 \end{aligned}$		$\begin{aligned} & \hline 160 \\ & 200 \end{aligned}$	Ω
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$	Room	120		300		300	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	see switching time test circuit	Room	60		200		200	ns
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\text {gen }}=6 \mathrm{~V} \\ \mathrm{R}_{\text {gen }}=0 \Omega \end{gathered}$	Room	4					pC
Power Supply									
Positive Supply Current	I+	=0 or 5 V	Room Full			$\begin{gathered} \hline 50 \\ 100 \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$	A
Negative Supply Current	I-	- $=0$ O 5	Room Full		-1 -5		-1 -5		
Power Supply Range for Continuous Operation	V_{OP}		Full		+ 4.5	+ 25	+ 4.5	+ 25	V

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

$R_{\text {DS(on) }}$ vs. V_{D} and Power Supply Voltages

$\mathbf{R}_{\mathrm{DS}(\mathrm{on})}$ vs. \mathbf{V}_{D} and Single Power Supply Voltages

Leakage Currents vs. Analog Voltage

$\mathbf{R}_{\mathrm{DS}(\mathrm{on})}$ vs. V_{D} and Temperature

Input Switching Threshold vs. Supply Voltage

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Switching Time vs. Single Supply Voltage

V+, V- Positive and Negative Supplies (V)
Switching Time vs. Power Supply Voltage

TEST CIRCUITS

Figure 2. Switching Time

Figure 3. Off Isolation

Figure 4. Channel-to-Channel Crosstalk

$\Delta \mathrm{V}_{\mathrm{O}}=$ measured voltage error due to charge injection The charge injection in coulombs is $\mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}$

Figure 5. Charge Injection

APPLICATIONS

Figure 6. Sample-and-Hold

Figure 7. Active Low Pass Filter with Digitally Selected Break Frequency

APPLICATIONS

Figure 8. A Precision Amplifier with Digitally Programable Input and Gains

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg? 70037.

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	1.35	1.75	0.053	0.069
$\mathbf{A}_{\mathbf{1}}$	0.10	0.20	0.004	0.008
\mathbf{B}	0.38	0.51	0.015	0.020
C	0.18	0.23	0.007	0.009
\mathbf{D}	9.80	10.00	0.385	0.393
E	3.80	4.00	0.149	0.157
\mathbf{e}	1.27 BSC	0.050 BSC		
\mathbf{H}	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
\varnothing	0°	8°	0°	8°
ECN: S-03946-Rev. F, 09-Jul-01 DWG: 5300				

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	3.81	5.08	0.150	0.200
$\mathbf{A}_{\mathbf{1}}$	0.38	1.27	0.015	0.050
\mathbf{B}	0.38	0.51	0.015	0.020
$\mathbf{B}_{\mathbf{1}}$	0.89	1.65	0.035	0.065
\mathbf{C}	0.20	0.30	0.008	0.012
\mathbf{D}	18.93	21.33	0.745	0.840
\mathbf{E}	7.62	8.26	0.300	0.325
$\mathbf{E}_{\mathbf{1}}$	5.59	7.11	0.220	0.280
$\mathbf{e}_{\mathbf{1}}$	2.29	2.79	0.090	0.110
$\mathbf{e}_{\mathbf{A}}$	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{\mathbf { Q } _ { \mathbf { 1 } }}$	1.27	2.03	0.050	0.080
\mathbf{S}	0.38	1.52	.015	0.060
ECN: S-03946-Rev. D, 09-Jul-01				
DWG: 5482				

CERDIP: 16-LEAD

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
A	4.06	5.08	0.160	0.200
A_{1}	0.51	1.14	0.020	0.045
B	0.38	0.51	0.015	0.020
B_{1}	1.14	1.65	0.045	0.065
C	0.20	0.30	0.008	0.012
D	19.05	19.56	0.750	0.770
E	7.62	8.26	0.300	0.325
E_{1}	6.60	7.62	0.260	0.300
\mathbf{e}_{1}	2.54 BSC		0.100 BSC	
$\mathrm{e}_{\text {A }}$	7.62 BSC		0.300 BSC	
L	3.18	3.81	0.125	0.150
L_{1}	3.81	5.08	0.150	0.200
Q_{1}	1.27	2.16	0.050	0.085
S	0.38	1.14	0.015	0.045
\propto	0°	15°	0°	15°

ECN: S-03946—Rev. G, 09-Jul-01
DWG: 5403

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads
Dimensions in inches (mm)

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG
NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T MAX4968CEXB+ MAX4760EWX+T NLAS3799BMNR2G NLAS5123MNR2G NLAS5213AMUTAG NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM + NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX ADG613SRUZ-EP NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ DG4051EEN-T1-GE4 SLAS3158MNR2G PI5A3157BC6EX PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG HI1-5051-2

