High-Speed Quad SPST CMOS Analog Switch

DESCRIPTION

The DG201HS is an improved monolithic device containing four independent analog switches. It is designed to provide high speed, low error switching of analog signals. Combining low on-resistance (25Ω) with high speed (t_{ON} : 38 ns), the DG201HS is ideally suited for high speed data acquisition requirements.

To achieve high voltage ratings and superior switching performance, the DG201HS is built on a proprietary high-voltage silicon-gate process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks input voltages to the supply values, when off.

FEATURES

- Fast Switching-ton: 38 ns
- Low On-Resistance: 25Ω
- Low Leakage: 100 pA
- Low Charge Injection
- TTL/CMOS Logic Compatible
- Single Supply Compatibility
- High Current Rating: - 30 mA

BENEFITS

- Faster Throughput
- Higher Accuracy
- Reduced Pedestal Error
- Upgrades Existing Designs
- Simple Interfacing
- Replaces HI201HS, ADG201HS
- Space Savings (TSSOP)

APPLICATIONS

- Data Acquisition
- Hi-Rel Systems
- Sample-and-Hold Circuits
- Communication Systems
- Automatic Test Equipment
- Integrator Reset Circuits
- Choppers
- Gain Switching
- Avionics

RoHS* COMPLIANT

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

[^0]| ORDERING INFORMATION | | |
| :---: | :---: | :---: |
| Temp Range | Package | Part Number |
| -40 to $85^{\circ} \mathrm{C}$ | 16-Pin Plastic DIP | DG201HSDJ |
| | | DG201HSDJ-E3 |
| | 16-Pin Narrow SOIC | DG201HSDY |
| | | DG201HSDY-E3 |
| | | DG201HSDY-T1 |
| | | DG201HSDY-T1-E3 |
| | 16-Pin TSSOP | DG201HSDQ |
| | | DG201HSDQ-E3 |
| | | DG201HSDQ-T1 |
| | | DG201HSDQ-T1-E3 |

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
V+ to V-		44	V
GND to V-		25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		(V-) -4 to (V+) + 4 or 30 mA , whichever occurs first	
Continuous Current (Any Terminal)		30	mA
Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		100	
Storage Temperature	(A Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(D Suffix)	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$	470	mW
	16-Pin CerDIP ${ }^{\text {d }}$	900	
	16-Pin Narrow Body SOIC and TSSOP ${ }^{\text {e }}$	600	
	LCC-20 ${ }^{\text {d }}$	900	

Notes:

a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

Figure 1.

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}, 0.8 \mathrm{~V}^{f} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \text { D Suffix } \\ & -40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		V-	V+	V-	V+	V
Drain-Source On-Resistance	$r^{\text {dS }}$ (on)	$\begin{aligned} & I_{S}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 8.5 \mathrm{~V} \\ & \mathrm{~V}+=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \end{aligned}$	Room Full	25		$\begin{aligned} & 50 \\ & 75 \end{aligned}$		$\begin{aligned} & 50 \\ & 75 \end{aligned}$	Ω
$\mathrm{r}_{\mathrm{DS} \text { (on) }}$ Match			Room	3					\%
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	0.1	$\begin{gathered} \hline-1 \\ -60 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 60 \\ \hline \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 20 \\ \hline \end{gathered}$	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	0.1	$\begin{gathered} \hline-1 \\ -60 \end{gathered}$	$\begin{gathered} \hline 1 \\ 60 \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	$\begin{gathered} \hline 1 \\ 20 \end{gathered}$	
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V} \end{gathered}$	Room Full	0.1	$\begin{gathered} \hline-1 \\ -60 \end{gathered}$	$\begin{gathered} 1 \\ 60 \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	
Digital Control									
Input, High Voltage	$\mathrm{V}_{\text {INH }}$		Full		2.4		2.4		V
Input, Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8		0.8	
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Full	5					pF
Input Current	$\mathrm{l}_{\mathrm{INH}}$ or $\mathrm{l}_{\text {INL }}$	$\mathrm{V}_{\text {IN }}$ under test $=0.8 \mathrm{~V}, 3 \mathrm{~V}$	Full		-1	1	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=3 \mathrm{~V} \end{gathered}$ See Figure 2	Room Full			$\begin{aligned} & \hline 60 \\ & 75 \end{aligned}$		$\begin{aligned} & \hline 60 \\ & 75 \end{aligned}$	ns
Turn-Off Time	${ }^{\text {tofF } 1}$		Room Full	30		$\begin{aligned} & 50 \\ & 70 \end{aligned}$		$\begin{aligned} & 50 \\ & 70 \end{aligned}$	
	toff2		Room	150					
Output Settling Time to 0.1 \%	$\mathrm{t}_{\text {s }}$		Room	180					
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega \end{gathered}$	Room	-5					pC
Off Isolation	OIRR	$\begin{gathered} R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF} \\ \mathrm{f}=100 \mathrm{kHz} \end{gathered}$	Room	85					
Crosstalk (Channel-to-Channel)	$\mathrm{X}_{\text {TALK }}$	$\begin{gathered} \text { Any Other Channel Switches } \\ R_{L}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ \mathrm{f}=100 \mathrm{kHz} \end{gathered}$	Room	100					dB
Source Off Capacitance	$\mathrm{C}_{\text {S(off) }}$		Room	8					
Drain Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	8					
Channel On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{S}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room	30					pF
Drain-to-Source Capacitance	$\mathrm{C}_{\text {DS(off) }}$		Room	0.5					
Power Supplies									
Positive Supply Current	$1+$		Room Full	4.5		10		10	
Negative Supply Current	$1-$	$\mathrm{V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$	Room Full	3.5	- 6		-6		mA
Power Consumption ${ }^{\text {c }}$	P_{C}		Full			240		240	mW

Notes:

a.Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d.The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e.Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Vishay Siliconix

SPECIFICATIONS ${ }^{\text {a }}$ FOR SINGLE SUPPLY									
Parameter	Symbol	Test ConditionsUnless Specified$\mathrm{V}+=10.8 \mathrm{~V}$ to 16.5 V,$\mathrm{~V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, 0.8 \mathrm{~V}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	V+	0	V+	V
Drain-Source On-Resistance	${ }^{\text {d }}$ (on)	$\begin{gathered} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=8.5 \mathrm{~V} \\ \mathrm{~V}+=10.8 \mathrm{~V} \end{gathered}$	Room Full	65		$\begin{gathered} 90 \\ 120 \end{gathered}$		$\begin{gathered} \hline 90 \\ 120 \end{gathered}$	Ω
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{S} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V} \\ \mathrm{~V}=0.5 \mathrm{~V}, 10 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \\ & \hline \end{aligned}$	0.1	$\begin{gathered} \hline-1 \\ -60 \end{gathered}$	$\begin{gathered} \hline 1 \\ 60 \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \\ \hline \end{gathered}$	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$	$V_{D}=10 \mathrm{~V}, 0.5 \mathrm{~V}$	Room Full	0.1	$\begin{gathered} \hline-1 \\ -60 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 60 \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	$\begin{gathered} \hline 1 \\ 20 \end{gathered}$	
Channel On Leakage Current	$\mathrm{I}_{\text {(on) }}+\mathrm{I}_{\text {(on) }}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=0.5 \mathrm{~V}, 10 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	0.1	$\begin{gathered} \hline-1 \\ -60 \end{gathered}$	$\begin{gathered} \hline 1 \\ 60 \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	$\begin{gathered} \hline 1 \\ 20 \end{gathered}$	
Digital Control									
Input, High Voltage	$\mathrm{V}_{\text {INH }}$		Full		2.4		2.4		
Input, Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8		0.8	\checkmark
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Full	5					pF
Input Current	$\mathrm{l}_{\mathrm{INH}}$ or $\mathrm{I}_{\mathrm{INL}}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} \text { under test }=0.8 \mathrm{~V}, 3 \mathrm{~V} \end{gathered}$	Full		-1	1	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics									
Turn-On Time	t_{O}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \mathrm{~V}=10.8 \mathrm{~V} \\ \text { See Figure } 2 \end{gathered}$	Room Full			$\begin{aligned} & 50 \\ & 70 \\ & \hline \end{aligned}$		50 70	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF1 }}$		$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$			$\begin{aligned} & 50 \\ & 70 \\ & \hline \end{aligned}$		50 70	
	toff2		Room	150					
Output Settling Time to 0.1 \%	t_{s}		Room	180					
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega \\ \hline \end{gathered}$	Room	10					pC
Off Isolation	OIRR	$\begin{array}{rl} R_{L}=1 & \mathrm{k} \Omega, C_{L}=10 \mathrm{pF} \\ & f=100 \mathrm{kHz} \end{array}$	Room	85					
Crosstalk (Channel-to-Channel)	$\mathrm{X}_{\text {TALK }}$	$\begin{gathered} \text { Any Other Channel Switches } \\ R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF} \\ f=100 \mathrm{kHz} \end{gathered}$	Room	100					dB
Source Off Capacitance	$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	10					pF
Drain Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	10					
Channel On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\text {ANALOG }}=0 \mathrm{~V}$	Room	30					
Power Supply									
Positive Supply Current	I+	$\mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V}$	Full			10		10	mA
Power Consumption ${ }^{\text {c }}$	P_{C}		Full			150		150	mW

Notes:

a.Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

[^1]TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$r_{D S(o n)}$ vs. V_{D} and Power Supply Voltages

$\mathbf{r}_{\mathrm{DS}(\mathrm{on})}$ vs. V_{D} and Single Power Supply Voltages

Input Switching Threshold vs. Supply Voltage

$r_{\text {DS(on) }}$ vs. V_{D} and Temperature

Leakage Currents vs. Temperature

Switching Time vs. Power Supply Voltage

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Times vs. Temperature

Switching Times vs. Temperature

Switching Times vs. Power Supply Voltage

Charge Injection vs. Source Voltage

\qquad

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \quad \frac{R_{L}}{R_{L}+r_{D S(\text { on })}}
$$

Figure 2. Switching Time

Figure 3. Charge Injection

Figure 4. Off Isolation

| $X_{\text {TALK }}$ Isolation $=20 \log$ |
| :--- | :--- |
| $C=R F$ bypass |$\left|\frac{V_{S}}{V_{O}}\right|$

Figure 5. Crosstalk

APPLICATIONS

A high-speed, low-glitch analog switch such as Vishay Siliconix's DG201HS improves the accuracy and shortens the acquisition and settling times of a sample-and-hold circuit.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www. vishay.com/ppg?70038.

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G DG302BDJ-E3 ADG741BKSZ-REEL ADG742BKSZ5-REEL7 PI5A100WE

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply

[^1]: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

