2.5Ω, High Bandwidth, Dual SPDT Analog Switch

DESCRIPTION

The DG2032E is a low-voltage dual single-pole / double-throw monolithic CMOS analog switch. Designed to operate from 1.8 V to 5.5 V power supply, the DG2032E achieves a bandwidth of 221 MHz while providing low on-resistance (2.5Ω), excellent on-resistance matching (0.3Ω) and flatness (1Ω) over the entire signal range.
The DG2032E offers the advantage of high linearity that reduces signal distortion, making ideal for audio, video, and USB signal routing applications.
Built on Vishay Siliconix's proprietary sub-micron high-density process, the DG2032E brings low power consumption at the same time as reduces PCB spacing with the QFN12 package.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. The QFN12 package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-GE4" suffix. The nickel-palladium-gold device terminations meet all JEDEC ${ }^{\circledR}$ standards for reflow and MSL ratings.

FEATURES

- 1.8 V to 5.5 V single supply operation
- Low RoN: 2.5Ω at 4.5 V
- $221 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth

RoHS COMPLANT

- Low off-isolation, -58 dB at 1 MHz
- +1.6 V logic compatible
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- High linearity
- Low power consumption
- High bandwidth
- Full rail signal swing range

APPLICATIONS

- USB / UART signal switching
- Audio / video switching
- Cellular phone
- Media players
- Modems
- Hard drives
- PCMCIA

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
LOGIC	NC1 AND NC2	NO1 AND NO2
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION		
TEMP. RANGE	PACKAGE	PART NUMBER
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12-\mathrm{Pin}$ QFN $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$	DG2032EDN-T1-GE4

ABSOLUTE MAXIMUM RATINGS			
PARAMETER		LIMIT	UNIT
Reference to GND			
V+		-0.3 to +6	
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		-0.3 to (V++0.3)	V
Continuous current (any terminal)		± 50	mA
Peak current (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		± 200	mA
Storage temperature (D suffix)		-65 to +150	${ }^{\circ} \mathrm{C}$
Power dissipation (packages) ${ }^{\text {b }}$	12-Pin QFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm})^{\text {c }}$	1295	mW
ESD / HBM	EIA / JESD22-A114-A	7.5k	
ESD / CDM	EIA / JESD22-C101-A	1.5k	v
Latch up	JESD78	300	mA

Notes

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$

DG2032E

SPECIFICATIONS (V+ = 3 V)									
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED$\mathrm{V}_{+}=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{INL}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=1.5 \mathrm{~V} \text { e }$		$\underset{\mathbf{a}}{\text { TEMP. }}$	LIMITS$-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$			UNIT	
				MIN. ${ }^{\text {c }}$	TYP. ${ }^{\text {b }}$	MAX. ${ }^{\text {c }}$			
Analog Switch									
Analog signal range ${ }^{\text {d }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	0	-	V+	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=0.4 \mathrm{~V} / \mathrm{V}+, \mathrm{I}_{\mathrm{NC} / \mathrm{NO}}=8 \mathrm{~mA}$		Room	-	7	11	Ω	
				Full	-	-	13		
		$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0.8 \mathrm{~V} / 1.8 \mathrm{~V}, \mathrm{I}_{\text {COM }}=10 \mathrm{~mA}$		Room	-	4.6	5.5		
				Full	-	-	6.5		
On-resistance matching	$\Delta \mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	$\begin{aligned} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}} & =0.8 \mathrm{~V} / 1.4 \mathrm{~V} / 1.8 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{COM}} & =10 \mathrm{~mA} \end{aligned}$		Room	-	0.02	0.3		
				Full	-	-	0.6		
On-resistance flatness ${ }^{\text {d,f }}$	$\mathrm{R}_{\text {flatan) }}$			Room	-	0.62	1		
				Full	-	-	1.5		
Off leakage current ${ }^{9}$	$\mathrm{I}_{\mathrm{NC} / \mathrm{NO} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=1 \mathrm{~V} / 3.2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{COM}}=3.2 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$		Room	-1	0.01	1	nA	
				Full	-5	-	5		
Channel-on leakage current ${ }^{9}$	$I_{\text {com(on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NC} / \mathrm{NO}}=1 \mathrm{~V} / 3.2 \mathrm{~V}$		Room	-1	0.01	1		
				Full	-5	-	5		
Digital Control									
Input current ${ }^{\text {d }}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$			Full	-1	-	1	$\mu \mathrm{A}$	
Input high voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$			Full	1.5	-	-		
Input low voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INL }}$			Full	-	-	0.4	V	
Digital input capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {IN }}$			Room	-	3	-	pF	
Dynamic Characteristics									
Turn-on time	t_{ON}	$\mathrm{V}_{\mathrm{NC} / \mathrm{NO}}=3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=300 \Omega$		Room	-	19	45	ns	
				Full	-	-	50		
Turn-off time	toff			Room	-	9	35		
				Full	-	-	45		
Break-before-make time ${ }^{\text {d }}$	$\mathrm{t}_{\text {BBM }}$			Room	4	11	-		
				Full	3	-	-		
Charge injection ${ }^{\text {d }}$	QinJ	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=1.5 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$		Room	-	-9	-	pC	
Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (set up capacitance)		Room	-	226	-	MHz	
Off-isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	-55	-	dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room	-	-42	-		
Channel-to-channel crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	-61	-		
			$\mathrm{f}=10 \mathrm{MHz}$	Room	-	-44	-		
NO, NC off capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		Room	-	7	-	pF	
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$			Room	-	7	-		
Channel-on capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$			Room	-	23	-		
	$\mathrm{C}_{\text {NC(on) }}$			Room	-	23	-		
Power Supply									
Power supply range	V+				2.7	-	3.3	V	
Power supply current ${ }^{\text {d }}$	I+	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 2.7 V		Full	-	-	1	$\mu \mathrm{A}$	

Notes

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix
b. Typical values are for design aid only, not guaranteed nor subject to production testing
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
d. Guarantee by design, not subjected to production test
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function
f. Difference of min. and max. values
g. Guaranteed by 5 V testing

DG2032E

SPECIFICATIONS (V+ = 5 V)									
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED$\mathrm{V}_{+}=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{INL}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2 \mathrm{~V} \mathrm{e}^{\mathrm{e}}$		$\underset{\mathrm{a}}{\text { TEMP. }}$	$\begin{gathered} \text { LIMITS } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNIT	
				MIN. ${ }^{\text {c }}$	TYP. ${ }^{\text {b }}$	MAX. ${ }^{\text {c }}$			
Analog Switch									
Analog signal range ${ }^{\text {d }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	0	-	V+	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0.8 \mathrm{~V} / 3.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}$		Room	-	2.5	3.1	Ω	
				Full	-	-	4		
On-resistance matching	$\Delta \mathrm{R}_{\mathrm{DS}}($ (n)	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.8 \mathrm{~V} / 2.5 \mathrm{~V} / 3.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA} \end{gathered}$		Room	-	0.01	0.4		
				Full	-	-	0.6		
On-resistance flatness ${ }^{\text {d, f }}$	$\mathrm{R}_{\text {flatan) }}$			Room	-	0.61	1		
				Full	-	-	1.5		
Off leakage current 9	$\mathrm{I}_{\mathrm{NC} / \mathrm{NO} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$		Room	-2	0.15	2	nA	
				Full	-10	-	10		
Channel-on leakage current 9	$\mathrm{ICOM}_{\text {(on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NC} / \mathrm{NO}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$		Room	-2	0.20	2		
				Full	-10	-	10		
Power down leakage ${ }^{\text {d }}$	IPD	$\mathrm{V}+=0 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=5.5 \mathrm{~V}, \mathrm{NC} / \mathrm{NO}$ open		Full	-	0.01	5	$\mu \mathrm{A}$	
		$\begin{gathered} \mathrm{V}+=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=5.5 \mathrm{~V}, \\ \mathrm{COM} \text {, open } \end{gathered}$		Full	-	0.01	3	mA	
Digital Control									
Input current ${ }^{\text {d }}$	$\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$			Full	-1	-	1	$\mu \mathrm{A}$	
Input high voltage ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{INH}}$			Full	2	-	-	V	
Input low voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INL }}$			Full	-	-	0.5		
Digital input capacitance ${ }^{\text {d }}$	$\mathrm{ClN}_{\text {IN }}$			Room	-	3	-	pF	
Dynamic Characteristics									
Turn-on time	ton	$\mathrm{V}_{\mathrm{NC} / \mathrm{NO}}=3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=300 \Omega$		Room	-	13	40	ns	
				Full	-	-	43		
Turn-off time	toff			Room	-	7	33		
				Full	-	-	35		
Break-before-make time ${ }^{\text {d }}$	$\mathrm{t}_{\text {BBM }}$			Room	3	6	-		
				Full	2	-	-		
Propagation delay ${ }^{\text {d }}$	tpd	$\mathrm{V}+=5 \mathrm{~V}$, no R_{L}		Room	-	380	-	ps	
Charge injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=2.5 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$		Room	-	-19.4	-	pC	
Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (set up capacitance)		Room	-	221	-	MHz	
Off-isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	-58	-	dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room	-	-43	-		
Channel-to-channel crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	-62	-		
			$\mathrm{f}=10 \mathrm{MHz}$	Room	-	-47	-		
NO, NC off capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		Room	-	7	-	pF	
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$			Room	-	7	-		
Channel-on capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$			Room	-	23	-		
	$\mathrm{C}_{\text {NC(on) }}$			Room	-	23	-		
Power Supply									
Power supply range	V+				4.5	-	5.5	V	
Power supply current ${ }^{\text {d }}$	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 5.5 V		Full	-	-	1	$\mu \mathrm{A}$	

Notes

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix
b. Typical values are for design aid only, not guaranteed nor subject to production testing
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
d. Guarantee by design, not subjected to production test
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function
f. Difference of min. and max. values
g. Guaranteed by 5 V testing

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Ron vs. $\mathbf{V}_{\text {COM }}$ and Single Supply Voltage

Ron vs. Analog Voltage and Temperature

Ron vs. Analog Voltage and Temperature

Supply Current vs. Temperature

Positive Supply Current vs. Switching Frequency

Switching Time vs. Temperature

DG2032E

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Switching Time vs. Temperature

Switching Threshold vs. Supply Voltage

Charge Injection vs. Source Voltage

Leakage Current vs. Temperature

Leakage Current vs. Temperature

Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Loss, OIRR, $\mathrm{X}_{\text {TALK }}$ vs. Frequency

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{COM}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)
$$

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

Fig. 2 - Break-Before-Make Interval

TEST CIRCUITS

IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

Fig. 4 - Off-Isolation

Fig. 5 - Channel Off / On Capacitance

Fig. 6 - Source / Drain Power Down Leakage

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?78604.

QFN-12 LEAD (3 X 3)

BOTTOM VIEW

SIDE VIEW

NOTES:

1. All dimensions are in millimeters.
2. N is the total number of terminals.
3. Dimension b applies to metallized terminal and is measured between 0.25 and 0.30 mm from terminal tip.

Coplanarity applies to the exposed heat sink slug as well as the terminal.
5. The pin \#1 identifier may be either a mold or marked feature, it must be located within the zone iindicated.

Dim	MILLIMETERS		INCHES			
	Min	Nom	Max	Min	Nom	Max
A	0.80	0.90	1.00	0.032	0.035	0.039
b	0.18	0.23	0.30	0.007	0.009	0.012
D	3.00 BSC			0.118 BSC		
D2	1.00	1.15	1.25	0.039	0.045	0.049
E	3.00 BSC			0.118 BSC		
E2	1.00	1.15	1.25	0.039	0.045	0.049
E	0.50 BSC			0.02 BSC		
L	0.45	0.55	0.65	0.018	0.022	0.026
AA	0.435			0.017		
BB	0.435			0.017		
CC	0.18				0.007	
DD	0.18					
ECN:C-03092-Rev. A, 14-Apr-03						
DWG: 5898						

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

