Improved Quad CMOS Analog Switches

DESCRIPTION

The DG211B, DG212B analog switches are highly improved versions of the industry-standard DG211, DG212. These devices are fabricated in Vishay Siliconix' proprietary silicon gate CMOS process, resulting in lower on-resistance, lower leakage, higher speed, and lower power consumption.

These quad single-pole single-throw switches are designed for a wide variety of applications in telecommunications, instrumentation, process control, computer peripherals, etc. An improved charge injection compensation design minimizes switching transients. The DG211B and DG212B can handle up to $\pm 22 \mathrm{~V}$, and have an improved continuous current rating of 30 mA . An epitaxial layer prevents latchup.

All devices feature true bi-directional performance in the on condition, and will block signals to the supply levels in the off condition.

The DG211B is a normally closed switch and the DG212B is a normally open switch. (see Truth Table.)

FEATURES

- $\pm 22 \mathrm{~V}$ supply voltage rating
- TTL and CMOS compatible logic
- Low on-resistance - $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}: 50 \Omega$
- Low leakage - $I_{D(o n)}$: 20 pA
- Single supply operation possible
- Extended temperature range
- Fast switching - $\mathrm{t}_{\mathrm{ON}}: 120 \mathrm{~ns}$
- Low charge injection - Q: 1 pC

BENEFITS

- Wide analog signal range
- Simple logic interface
- Higher accuracy
- Minimum transients
- Reduced power consumption
- Superior to DG211, DG212
- Space savings (TSSOP)

APPLICATIONS

- Industrial instrumentation
- Test equipment
- Communications systems
- Disk drives
- Computer peripherals
- Portable instruments
- Sample-and-hold circuits

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG211B	DG212B
0	ON	OFF
1	OFF	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

* Pb containing terminations are not RoHS compliant, exemptions may apply.

Vishay Siliconix

ORDERING INFORMATION			
Temp. Range	Package	Standard Part Number	Lead (Pb)-free Part Number
$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$	16-Pin Plastic DIP	DG211BDJ	DG211BDJ-E3
		DG212BDJ	DG212BDJ-E3
	16-Pin Narrow SOIC	$\begin{gathered} \text { DG211BDY } \\ \text { DG211BDY-T1 } \end{gathered}$	$\begin{gathered} \hline \text { DG211BDY-E3 } \\ \text { DG211BDY-T1-E3 } \end{gathered}$
		$\begin{gathered} \text { DG212BDY } \\ \text { DG212BDY-T1 } \end{gathered}$	$\begin{aligned} & \text { DG212BDY-E3 } \\ & \text { DG212BDY-T1-E3 } \end{aligned}$
	16-Pin TSSOP	$\begin{gathered} \text { DG211BDQ } \\ \text { DG211BDQ-T1 } \end{gathered}$	$\begin{aligned} & \text { DG211BDQ-E3 } \\ & \text { DG211BDQ-T1-E3 } \end{aligned}$
		$\begin{gathered} \text { DG212BDQ } \\ \text { DG212BDQ-T1 } \end{gathered}$	$\begin{aligned} & \text { DG212BDQ-E3 } \\ & \text { DG212BDQ-T1-E3 } \end{aligned}$

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
Parameter		Limit	Unit
Voltages Referenced, V+ to V-		44	V
GND		25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Current (Any terminal)		30	mA
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max.)		100	
Storage Temperature		-65 to 125	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$	470	mW
	16-Pin Narrow SOIC and TSSOP ${ }^{\text {d }}$	640	

Notes:

a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM (Typical Channel)

Figure 1.

SPECIFICATIONS							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V} \end{gathered}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-15		15	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room Full		45	$\begin{gathered} \hline 85 \\ 100 \end{gathered}$	Ω
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$ Match	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$		Room		2		
Source Off Leakage Current	$I_{\text {S(off) }}$	$\mathrm{V}_{S}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	Room Full	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	± 0.01	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	
Drain Off Leakage Current	$I_{\text {(off) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{S}= \pm 14 \mathrm{~V}$	Room Full	$\begin{aligned} & -0.5 \\ & -5 \end{aligned}$	± 0.01	$\begin{gathered} 0.5 \\ 5 \\ \hline \end{gathered}$	nA
Drain On Leakage Current	$I_{\text {don }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	Room Full	$\begin{aligned} & \hline-0.5 \\ & -10 \end{aligned}$	± 0.02	$\begin{aligned} & 0.5 \\ & 10 \\ & \hline \end{aligned}$	
Digital Control							
Input Voltage High	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Voltage Low	$\mathrm{V}_{\text {INL }}$		Full			0.8	V
Input Current	$\mathrm{I}_{\mathrm{INH}}$ or $\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\text {INH }}$ or $\mathrm{V}_{\text {INL }}$	Full	-1		1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Room		5		pF
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$	Room			300	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	see figure 2	Room			200	ns
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room		1		pC
Source-Off Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room		5		
Drain-Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room		5		pF
Channel-On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room		16		
Off Isolation	OIRR	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$,	Room		90		dB
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\text {RMS }}, \mathrm{f}=100 \mathrm{kHz}$	Room		95		
Power Supply							
Positive Supply Current	$1+$		$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$			$\begin{array}{r} 10 \\ 50 \\ \hline \end{array}$	
Negative Supply Current	I-	$\mathrm{V}_{\text {IN }}=0$ or 5 V	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	$\begin{array}{r} \hline-10 \\ -50 \\ \hline \end{array}$			$\mu \mathrm{A}$
Logic Supply Current	I_{L}		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$			$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	
Power Supply Range for Continuous Operation	V_{OP}		Full	± 4.5		± 22	V

Vishay Siliconix

SPECIFICATIONS (for Single Supply)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V} \end{gathered}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		12	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 8 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$	Room Full		90	$\begin{aligned} & 160 \\ & 200 \end{aligned}$	Ω
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$	Room			300	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	see figure 1	Room			200	ns
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=6 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room		4		pC
Power Supply							
Positive Supply Current	I+		Room Full			$\begin{aligned} & 10 \\ & 50 \end{aligned}$	
Negative Supply Current	I-	$\mathrm{V}_{\text {IN }}=0$ or 5 V	Room Full	$\begin{aligned} & -10 \\ & -50 \end{aligned}$			$\mu \mathrm{A}$
Logic Supply Current	$I_{\text {L }}$		Room Full			$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	
Power Supply Range for Continuous Operation	V_{OP}		Full	+ 4.5		+ 25	V

Notes:
a. Room $=25{ }^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. Guaranteed by design, not subject to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

$R_{D S(o n)}$ vs. V_{D} and Single Power Supply Voltages

Leakage Current vs. Temperature

Leakage Currents vs. Analog Voltage

$\mathbf{Q}_{\mathrm{S}}, \mathbf{Q}_{\mathrm{D}}$ - Charge Injection vs. Analog Voltage

TEST CIRCUITS

Figure 2. Switching Time

Figure 3. Off Isolation

$\Delta \mathrm{V}_{\mathrm{O}}=$ measured voltage error due to charge injection The charge injection in coulombs is $\mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}$

Figure 5. Charge Injection

APPLICATIONS

Figure 6. Sample-and-Hold

Figure 7. Active Low Pass Filter with Digitally Selected Break Frequency

APPLICATIONS

Figure 8. A Precision Amplifier with Digitally Programable Input and Gains

[^0] reliability data, see www.vishay.com/ppg?70040.

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	1.35	1.75	0.053	0.069
$\mathbf{A}_{\mathbf{1}}$	0.10	0.20	0.004	0.008
\mathbf{B}	0.38	0.51	0.015	0.020
C	0.18	0.23	0.007	0.009
\mathbf{D}	9.80	10.00	0.385	0.393
E	3.80	4.00	0.149	0.157
\mathbf{e}	1.27 BSC	0.050 BSC		
\mathbf{H}	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
\varnothing	0°	8°	0°	8°
ECN: S-03946-Rev. F, 09-Jul-01 DWG: 5300				

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	3.81	5.08	0.150	0.200
$\mathbf{A}_{\mathbf{1}}$	0.38	1.27	0.015	0.050
\mathbf{B}	0.38	0.51	0.015	0.020
$\mathbf{B}_{\mathbf{1}}$	0.89	1.65	0.035	0.065
\mathbf{C}	0.20	0.30	0.008	0.012
\mathbf{D}	18.93	21.33	0.745	0.840
\mathbf{E}	7.62	8.26	0.300	0.325
$\mathbf{E}_{\mathbf{1}}$	5.59	7.11	0.220	0.280
$\mathbf{e}_{\mathbf{1}}$	2.29	2.79	0.090	0.110
$\mathbf{e}_{\mathbf{A}}$	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{\mathbf { Q } _ { \mathbf { 1 } }}$	1.27	2.03	0.050	0.080
\mathbf{S}	0.38	1.52	.015	0.060
ECN: S-03946-Rev. D, 09-Jul-01				
DWG: 5482				

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads
Dimensions in inches (mm)

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G DG302BDJ-E3 ADG741BKSZ-REEL ADG742BKSZ5-REEL7 PI5A100WE

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and

