Low-Voltage, Low RON, Single Analog Switch In miniQFN-6 Package

DESCRIPTION

The DG2511, DG2512, DG2513 are low on-resistance, single-pole/double-throw or single-pole/single-throw monolithic CMOS analog switch. It is designed for low voltage applications. The DG2511, DG2512, DG2513 are ideal for portable and battery powered equipment, requiring high performance and efficient use of board space. In additional to the low on-resistance (1.3Ω at 2.7 V).
The DG2511 is an SPDT and the DG2512, DG2513 are SPST. The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.
The DG2511, DG2512, DG2513 are built on Vishay Siliconix's low voltage JI5L process. An epitaxial layer prevents latchup.
Break-before-make is guaranteed.
The DG2511, DG2512, DG2513 represents a breakthrough in packaging development for analog switching products. The miniQFN-6 package ($1.2 \times 1 \mathrm{~mm}$).
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with NiPdAu device terminations, the lead (Pb)-free "-E4" suffix is being used as a designator.

FEATURES

- Low voltage operation (1.8 V to 5.5 V)
- Low on-resistance - $\mathrm{R}_{\mathrm{ON}}: 1.3 \Omega$ at 2.7 V
- Low charge injection
- Latch-up current > 300 mA (JESD78A)
- miniQFN-6 package ($1.2 \times 1 \mathrm{~mm}$)
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Reduced power consumption
- Simple logic interface
- High accuracy
- Reduce board space
- Guaranteed 2 V operation

APPLICATIONS

- Cellular phones
- Communication systems
- Portable test equipment
- Battery operated systems
- Sample and hold circuits
- ADC and DAC applications
- Low voltage data acquisition systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top View

Top View

Device Marking: Ax for DG2511
Bx for DG2512
Cx for DG2513
x = Date/Lot Traceability Code Note: Pin 1 has long lead

TRUTH TABLE		
Logic	NC	NO
0	On	Off
1	Off	On

COMMERCIAL ORDERING INFORMATION		
Temp Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	miniQFN-6	Lear (Pb)-free
	with Tape and Reel	DG2512DN-T1-E4
	DG1-E4	

DG2511, DG2512, DG2513

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Reference V+ to GND		-0.3 to + 6	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		-0.3 to (V++0.3)	
Continuous Current (NO, NC, COM pins)		± 150	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle)		± 300	
Storage Temperature	D Suffix	- 65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	miniQFN-6 ${ }^{\text {c }}$	160	mW

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified $\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$ or $2 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$		1.4	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	
$\mathrm{R}_{\text {ON }}$ Match	$\mathrm{AR}_{\mathrm{ON}}$		Room			0.15	Ω
$\mathrm{R}_{\text {ON }}$ Flatness	$\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$		Room		0.3	0.4	
Switch Off Leakage Current ${ }^{\text {f }}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ ${ }^{\mathrm{I} C \text { (off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO},}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -2 \\ -20 \end{gathered}$		$\begin{gathered} 2 \\ 20 \end{gathered}$	nA
	$\mathrm{I}_{\text {com(off) }}$		Room Full	$\begin{gathered} -2 \\ -20 \end{gathered}$		$\begin{gathered} \hline 2 \\ 20 \end{gathered}$	
Channel-On Leakage Current ${ }^{\text {f }}$	${ }^{\text {com(on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 3 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	$\begin{aligned} & -2 \\ & -20 \end{aligned}$		$\begin{gathered} 2 \\ 20 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.6			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full		18	$\begin{aligned} & 43 \\ & 49 \end{aligned}$	ns
Turn-Off Time	$t_{\text {OFF }}$		Room Full		7	$\begin{aligned} & 32 \\ & 34 \end{aligned}$	
Break-Before-Make Time	$t_{\text {BBM }}$		Room	1	12		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		3		pC
Off-lsolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-58		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-64		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		21		pF
Channel-On Capacitance ${ }^{\text {d }}$	C_{ON}		Room		61		
Power Supply							
Power Supply Range	V+			1.8		5.5	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.01	1	$\mu \mathrm{A}$

SPECIFICATIONS (V+=5 V)							
Parameter	Symbol	Test ConditionsOtherwise Unless Specified$\mathrm{V}+=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.6 \mathrm{~V}$ or 1.8 Ve	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V} / 2.5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$		1	$\begin{gathered} \hline 1.3 \\ 1.45 \end{gathered}$	
$\mathrm{R}_{\text {ON }}$ Match	$\mathrm{AR}_{\mathrm{ON}}$		Room			0.15	Ω
$\mathrm{R}_{\text {ON }}$ Flatness	$\begin{gathered} \hline \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$		Room		0.3	0.4	
Switch Off Leakage Current	${ }^{1} \mathrm{NO}$ (off) ${ }^{\mathrm{I} C \text { (off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -2 \\ -20 \end{gathered}$		$\begin{gathered} \hline 2 \\ 20 \end{gathered}$	nA
	$\mathrm{I}_{\text {COM (off) }}$		Room Full	$\begin{gathered} -2 \\ -20 \end{gathered}$		$\begin{gathered} 2 \\ 20 \end{gathered}$	
Channel-On Leakage Current	${ }^{\text {COM (on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$	Room Full	$\begin{gathered} -2 \\ -20 \end{gathered}$		$\begin{gathered} \hline 2 \\ 20 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.8			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.6	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		11	$\begin{aligned} & 35 \\ & 39 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full		6	$\begin{aligned} & 31 \\ & 33 \end{aligned}$	
Break-Before-Make Time	$\mathrm{t}_{\text {BBM }}$		Room	1	5		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		14		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-58		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-64		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		19		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{Con}^{\text {O }}$		Room		61		
Power Supply							
Power Supply Range	V+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}		1.8		5.5	V
Power Supply Current	$1+$				0.01	1	$\mu \mathrm{A}$

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

$\mathrm{V}_{\mathrm{COM}}$ - Analog Voltage (V)
Leakage vs. Analog Voltage

Switching Time vs. Temperature and Supply Voltage

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Switching Threshold vs. Supply Voltage

Charge Injection vs. Analog Voltage

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
\mathrm{v}_{\text {OUT }}=\mathrm{v}_{\mathrm{COM}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)
$$

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

MINI QFN-6L CASE OUTLINE

DIM	MILLIMETERS			INCHES			
	MIN.	NAM.	MAX.	MIN.	NAM.	MAX.	
A	0.50	0.55	0.60	0.0197	0.0217	0.0236	
A1	0.00	-	0.05	0.000	-	0.002	
b	0.15	0.20	0.25	0.006	0.008	0.010	
c	0.15 REF			0.006 REF			
D	1.15	1.20	1.25	0.045	0.047	0.049	
E	0.95	1.00	1.05	0.037	0.039	0.041	
e	0.40 BSC				0.016 BSC		
L	0.30	0.35	0.40	0.012	0.014	0.016	
L1	0.40	0.45	0.50	0.016	0.018	0.020	

> ECN T-07039-Rev. A, 12-Feb-07

DWG: 5958

RECOMMENDED MINIMUM PADS FOR MINI QFN 6L

Mounting Footprint Dimensions in mm

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

