## 3- $\Omega$, High Bandwidth, Dual SPDT Analog Switch

## DESCRIPTION

The DG2517, DG2518 are low-voltage dual single-pole/ double-throw monolithic CMOS analog switches. Designed to operate from 1.8 V to 5.5 V power supply, the DG2517, DG2518 achieves a bandwidth of 242 MHz while providing low on-resistance ( $3 \Omega$ ), excellent on-resistance matching ( $0.2 \Omega$ ) and flatness ( $1 \Omega$ ) over the entire signal range.
The DG2517, DG2518 offers the advantage of high linearity that reduces signal distortion, making ideal for audio, video, and USB signal routing applications. Additionally, the DG2517, DG2518 are 1.6 V logic compatible within the full operation voltage range.
Built on Vishay Siliconix's proprietary sub-micron highdensity process, the DG2517, DG2518 brings low power consumption at the same time as reduces PCB spacing with the MSOP10 and DFN10 packages.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. The DFN package has a nickel-palladium-gold device termination and is represented by the lead ( Pb )-free "-E4" suffix. The MSOP package uses $100 \%$ matte Tin device termination and is represented by the lead (Pb)- free "-E3" suffix. Both the matte Tin and nickel-palladium-gold device terminations meet all JEDEC standards for reflow and MSL ratings.

## FEATURES

- 1.8 V to 5.5 V single supply operation
- Low $\mathrm{R}_{\mathrm{ON}}: 3 \Omega$ at 4.2 V
- $242 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth
- Low off-isolation, -51 dB at 10 MHz
-     + 1.6 V logic compatible


## BENEFITS

- High linearity
- Low power consumption
- High bandwidth
- Full rail signal swing range


## APPLICATIONS

- USB/UART signal switching
- Audio/video switching
- Cellular phone
- Media players
- Modems
- Hard drives
- PCMCIA


RoHS COMPLIANT

## FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION



| TRUTH TABLE |  |  |
| :---: | :---: | :---: |
| Logic | NC1 and NC2 | NO1 and NO2 |
| 0 | ON | OFF |
| 1 | OFF | ON |


| ORDERING INFORMATION |  |  |
| :---: | :---: | :---: |
| Temp. Range | Package | Part Number |
| $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | MSOP-10 | DG2517DQ-T1-E3 |
|  |  | DG2518DQ-T1-E3 |
|  | DFN-10 | DG2517DN-T1-E4 |
|  |  | DG2518DN-T1-E4 |

## Vishay Siliconix

| ABSOLUTE MAXIMUM RATINGS |  |  |  |
| :---: | :---: | :---: | :---: |
| Parameter |  | Limit | Unit |
| Reference to GND |  |  |  |
| V+ |  | - 0.3 to +6 | V |
| IN, COM, NC, $\mathrm{NO}^{\text {a }}$ |  | -0.3 to (V++0.3) |  |
| Continuous Current (Any terminal) |  | $\pm 50$ | mA |
| Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) |  | $\pm 200$ |  |
| Storage Temperature (D Suffix) |  | - 65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| Power Dissipation (Packages) ${ }^{\text {b }}$ | MSOP-10 ${ }^{\text {c }}$ | 320 | mW |
|  | DFN-10 ${ }^{\text {d }}$ | 1191 |  |

## Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.
c. Derate $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $14.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

| SPECIFICATIONS (V+=3 V ) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.5 \text { or } 1.4 \mathrm{~V}^{\mathrm{e}}$ |  | Temp. ${ }^{\text {a }}$ |  |  |  | Unit |
|  |  |  |  | Min. ${ }^{\text {b }}$ | Typ. ${ }^{\text {c }}$ | Max. ${ }^{\text {b }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |  |
| Analog Signal Range ${ }^{\text {d }}$ | $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, $\mathrm{V}_{\mathrm{COM}}$ |  |  |  | Full | 0 |  | V+ | V |
| On-Resistance | $\mathrm{R}_{\text {ON }}$ | $\begin{aligned} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}} \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \end{aligned}$ |  | Room Full |  | 3.2 | $\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$ |  |
| $\mathrm{R}_{\text {ON }}$ Flatness | $\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$ | $\begin{array}{r} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \end{array}$ | $\overline{5}, 2 \mathrm{~V}$ | $\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$ |  | 1.0 | $\begin{aligned} & 1.4 \\ & 16 \end{aligned}$ | $\Omega$ |
| R ON Match Between Channels | $\triangle \mathrm{R}_{\text {ON }}$ | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}} \\ & \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \mathrm{r} \end{aligned}$ |  | $\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$ |  | 0.1 | $\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$ |  |
| Switch Off Leakage Current ${ }^{\dagger}$ | $\mathrm{I}_{\mathrm{NO} \text { (off), }}$ NC(off) | $\begin{gathered} \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$ |  | $\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$ | $\begin{gathered} -1 \\ -10 \\ \hline \end{gathered}$ |  | 10 | nA |
|  | $\mathrm{I}_{\text {com(off) }}$ |  |  | $\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$ | $\begin{gathered} -1 \\ -10 \end{gathered}$ |  | 1 |  |
| Channel-On Leakage Current ${ }^{\dagger}$ | Icom(on) | $\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3 \mathrm{~V}$ |  | Room Full | $\begin{gathered} -1 \\ -10 \end{gathered}$ |  | $\begin{gathered} 1 \\ 10 \end{gathered}$ |  |
| Digital Control |  |  |  |  |  |  |  |  |
| Input High Voltage ${ }^{\text {d }}$ | $\mathrm{V}_{\text {INH }}$ |  |  | Full | 1.4 |  |  | V |
| Input Low Voltage | $\mathrm{V}_{\text {INL }}$ |  |  | Full |  |  | 0.5 |  |
| Input Capacitance | $\mathrm{C}_{\text {in }}$ |  |  | Full |  | 4 |  | pF |
| Input Current | $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$ |  |  | Full | 1 |  | 1 | $\mu \mathrm{A}$ |
| Dynamic Characteristics |  |  |  |  |  |  |  |  |
| Turn-On Time | ton | $\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$ |  | $\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$ |  | 15 | $\begin{aligned} & 30 \\ & 50 \end{aligned}$ | ns |
| Turn-Off Time | $\mathrm{t}_{\text {OFF }}$ |  |  | Room Full |  | 10 | $\begin{aligned} & 25 \\ & 35 \end{aligned}$ |  |
| Break-Before-Make Time | $\mathrm{t}_{\mathrm{d}}$ | $\mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3$ | , $\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ | Full | 1 |  |  |  |
| Charge Injection ${ }^{\text {d }}$ | $\mathrm{Q}_{\text {INJ }}$ | $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=1.5 \mathrm{~V}$ | GEN $=0 \Omega$ | Room |  | 1 |  | pC |
| - 3 dB Bandwidth | BW | $0 \mathrm{dBm}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}$ | $50 \Omega$ | Room |  | 242 |  | MHz |
| Off-Isolation ${ }^{\text {d }}$ | OIRR | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room |  | -71 |  | dB |
|  |  |  | $\mathrm{f}=10 \mathrm{MHz}$ | Room |  | -51 |  |  |
| Crosstalk ${ }^{\text {d }}$ | $\mathrm{X}_{\text {TALK }}$ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room |  | -73 |  |  |
|  |  |  | $\mathrm{f}=10 \mathrm{MHz}$ | Room |  | -55 |  |  |
| $\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{NO} \text { (off) }}$ | $\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}_{+}, \mathrm{f}=1 \mathrm{MHz}$ |  | Room |  | 8 |  | pF |
|  | $\mathrm{C}_{\mathrm{NC} \text { (off) }}$ |  |  | Room |  | 8 |  |  |
| Channel-On Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{NO} \text { (on) }}$ |  |  | Room |  | 35 |  |  |
|  | $\mathrm{C}_{\mathrm{NC} \text { (on) }}$ |  |  | Room |  | 35 |  |  |
| Power Supply |  |  |  |  |  |  |  |  |
| Power Supply Current | $1+$ | $\mathrm{V}_{\text {IN }}=0$ or V |  | Full |  | 0.01 | 1.0 | $\mu \mathrm{A}$ |

## Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $V_{I N}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

| SPECIFICATIONS (V+ = 5 V) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Test Conditions Otherwise Unless Specified$\mathrm{V}+=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.8 \text { or } 2.0 \mathrm{~V}^{\mathrm{e}}$ |  | Temp. ${ }^{\text {a }}$ | $\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$ |  |  | Unit |
|  |  |  |  | Min. ${ }^{\text {b }}$ | Typ. ${ }^{\text {c }}$ | Max. ${ }^{\text {b }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |  |
| Analog Signal Range ${ }^{\text {d }}$ | $\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$ |  |  |  | Full | 0 |  | V+ | V |
| On-Resistance | $\mathrm{R}_{\mathrm{ON}}$ | $\mathrm{V}+=4.2 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=3.5 \mathrm{~V}$, | / $\mathrm{NC}=10 \mathrm{~mA}$ | $\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$ |  | 3 | $\begin{aligned} & 4.0 \\ & 4.3 \\ & \hline \end{aligned}$ |  |
| $\mathrm{R}_{\text {ON }}$ Flatness | $\mathrm{R}_{\mathrm{ON}}$ Flatness | $\begin{array}{r} \hline \mathrm{V}+=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}= \\ \mathrm{I}_{\mathrm{NO} / \mathrm{NC}}=10 \end{array}$ | $, 3.5 \mathrm{~V}$ | Room Full |  | 1.1 | $\begin{aligned} & 1.4 \\ & 1.6 \end{aligned}$ | $\Omega$ |
| $\mathrm{R}_{\text {ON }}$ Match Between Channels | $\Delta \mathrm{R}_{\mathrm{ON}}$ | $\mathrm{V}+=4.2 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=3.5$ | $\mathrm{NC}=10 \mathrm{~mA}$ | Room Full |  | 0.1 | $\begin{aligned} & 0.3 \\ & 0.4 \end{aligned}$ |  |
| Switch Off Leakage Current | $\mathrm{I}_{\mathrm{NO} \text { (off), }}$ $I_{\mathrm{NC} \text { (off) }}$ | $\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$ |  | Room Full | $\begin{gathered} -1 \\ -10 \end{gathered}$ |  | $\begin{gathered} \hline 1 \\ 10 \end{gathered}$ | nA |
|  | $\mathrm{I}_{\text {COM(off) }}$ |  |  | Room Full | $\begin{gathered} \hline-1 \\ -10 \end{gathered}$ |  | $\begin{gathered} 1 \\ 10 \end{gathered}$ |  |
| Channel-On Leakage Current | $\mathrm{I}_{\text {COM(on) }}$ | $\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$ |  | Room Full | $\begin{gathered} \hline-1 \\ -10 \end{gathered}$ |  | $\begin{gathered} \hline 1 \\ 10 \end{gathered}$ |  |
| Digital Control |  |  |  |  |  |  |  |  |
| Input High Voltage ${ }^{\text {d }}$ | $\mathrm{V}_{\text {INH }}$ |  |  | Full | 2.0 |  |  | V |
| Input Low Voltage | $\mathrm{V}_{\text {INL }}$ |  |  | Full |  |  | 0.8 |  |
| Input Capacitance | $\mathrm{C}_{\text {in }}$ |  |  | Full |  | 4 |  | pF |
| Input Current | $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or |  | Full | 1 |  | 1 | $\mu \mathrm{A}$ |
| Dynamic Characteristics |  |  |  |  |  |  |  |  |
| Turn-On Time | ${ }^{\text {toN }}$ | $\begin{gathered} \mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$ |  | Room Full |  | 12 | $\begin{aligned} & 25 \\ & 45 \\ & \hline \end{aligned}$ | ns |
| Turn-Off Time | $\mathrm{t}_{\text {OFF }}$ |  |  | Room Full |  | 8 | $\begin{aligned} & 20 \\ & 30 \\ & \hline \end{aligned}$ |  |
| Break-Before-Make Time | $\mathrm{t}_{\mathrm{d}}$ | $\mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |  | Full | 1 |  |  |  |
| Charge Injection ${ }^{\text {d }}$ | $\mathrm{Q}_{\text {INJ }}$ | $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$ |  | Room |  | 2 |  | pC |
| -3 dB Bandwidth | BW | $0 \mathrm{dBm}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ |  | Room |  | 242 |  | MHz |
| Off-Isolation ${ }^{\text {d }}$ | OIRR | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room |  | -71 |  | dB |
|  |  |  | $\mathrm{f}=10 \mathrm{MHz}$ | Room |  | -51 |  |  |
| Crosstalk ${ }^{\text {d }}$ | $\mathrm{X}_{\text {TALK }}$ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room |  | -73 |  |  |
|  |  |  | $\mathrm{f}=10 \mathrm{MHz}$ | Room |  | -55 |  |  |
| Source-Off Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{NO} \text { (off) }}$ | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$ |  | Room |  | 8 |  | pF |
|  | $\mathrm{C}_{\mathrm{NC} \text { (off) }}$ |  |  | Room |  | 8 |  |  |
| Channel-On Capacitance ${ }^{\text {d }}$ | $\mathrm{C}_{\mathrm{NO} \text { (on) }}$ |  |  | Room |  | 35 |  |  |
|  | $\mathrm{C}_{\mathrm{NC} \text { (on) }}$ |  |  | Room |  | 35 |  |  |
| Power Supply |  |  |  |  |  |  |  |  |
| Power Supply Range | V+ |  |  |  | 1.8 |  | 5.5 | V |
| Power Supply Current | I+ | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{+}$ |  | Full |  | 0.01 | 1.0 | $\mu \mathrm{A}$ |

## Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted


R $_{\text {ON }}$ vs. $V_{\text {COM }}$ and Supply Voltage


Supply Current vs. Temperature


Leakage Current vs. Temperature


R $_{\text {ON }}$ vs. Analog Voltage and Temperature


Supply Current vs. Input Switching Frequency


Leakage vs. Analog Voltage

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted


Switching Time vs. Temperature


Off-Isolation and Crosstalk vs. Frequency


Insertion Loss vs. Frequency


Charge Injection vs. Analog Voltage


Switching Threshold vs. Supply Voltage

## TEST CIRCUITS


$C_{L}$ (includes fixture and stray capacitance)

$$
\mathrm{v}_{\text {OUT }}=\mathrm{v}_{\mathrm{COM}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)
$$



Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time


Figure 2. Break-Before-Make Interval



IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

## TEST CIRCUITS



Figure 4. Off-Isolation


Figure 5. Channel Off/On Capacitance

## MSOP: 10-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)


NOTES:

1. Die thickness allowable is $0.203 \pm 0.0127$.
2. Dimensioning and tolerances per ANSI.Y14.5M-1994.
3. 

Dimensions " $D$ " and " $E_{1}$ " do not include mold flash or protrusions, and are measured at Datum plane $-\mathrm{H}^{-}$, mold flash or protrusions shall not exceed 0.15 mm per side.
4.
5.
6.

Dimension is the length of terminal for soldering to a substrate
Terminal positions are shown for reference only.
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm . See detail "B" and Section "C-C".
8. Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.
9. Controlling dimension: millimeters
10. This part is compliant with JEDEC registration MO-187, variation AA and BA.
11. Datums -A- and -B- to be determined Datum plane -H-

Exposed pad area in bottom side is the same as teh leadframe pad size.


Detail "B" (Scale: 30/1) Dambar Protrusion



End View
$\mathrm{N}=10 \mathrm{~L}$

| Dim | MILLIMETERS |  |  | Note |
| :---: | :---: | :---: | :---: | :---: |
|  | Min | Nom | Max |  |
| A | - | - | 1.10 |  |
| $\mathrm{A}_{1}$ | 0.05 | 0.10 | 0.15 |  |
| $\mathrm{A}_{2}$ | 0.75 | 0.85 | 0.95 |  |
| b | 0.17 | - | 0.27 | 8 |
| $\mathrm{b}_{1}$ | 0.17 | 0.20 | 0.23 | 8 |
| C | 0.13 | - | 0.23 |  |
| $\mathrm{C}_{1}$ | 0.13 | 0.15 | 0.18 |  |
| D | 3.00 BSC |  |  | 3 |
| E | 4.90 BSC |  |  |  |
| $\mathrm{E}_{1}$ | 2.90 | 3.00 | 3.10 | 3 |
| e | 0.50 BSC |  |  |  |
| $\mathrm{e}_{1}$ | 2.00 BSC |  |  |  |
| L | 0.40 | 0.55 | 0.70 | 4 |
| N | 10 |  |  | 5 |
| $\propto$ | $0^{\circ}$ | $4^{\circ}$ | $6^{\circ}$ |  |
| ECN: T-02080—Rev. C, 15-Jul-02 DWG: 5867 |  |  |  |  |

## DFN-10 LEAD (3 X 3)



BOTTOM VIEW


SIDE VIEW

NOTES:

1. All dimensions are in millimeters and inches.
2. $N$ is the total number of terminals.
3. Dimension $b$ applies to metallized terminal and is measured between 0.15 and 0.30 mm from terminal tip.
4. Coplanarity applies to the exposed heat sink slug as well as the terminal.
5. The pin \#1 identifier may be either a mold or marked feature, it must be located within the zone iindicated.

| Dim | MILLIMETERS |  |  | INCHES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Nom | Max | Min | Nom | Max |
| A | 0.80 | 0.90 | 1.00 | 0.031 | 0.035 | 0.039 |
| A1 | 0.00 | 0.02 | 0.05 | 0.000 | 0.001 | 0.002 |
| A3 | 0.20 BSC |  |  | 0.008 BSC |  |  |
| b | 0.18 | 0.23 | 0.30 | 0.007 | 0.009 | 0.012 |
| D | 3.00 BSC |  |  | 0.118 BSC |  |  |
| D2 | 2.20 | 2.38 | 2.48 | 0.087 | 0.094 | 0.098 |
| E | 3.00 BSC |  |  | 0.118 BSC |  |  |
| E2 | 1.49 | 1.64 | 1.74 | 0.059 | 0.065 | 0.069 |
| e | 0.50 BSC |  |  | 0.020 BSC |  |  |
| L | 0.30 | 0.40 | 0.50 | 0.012 | 0.016 | 0.020 |
| *Use millimeters as the primary measurement. |  |  |  |  |  |  |
| ECN: S-42134-Rev. A, 29-Nov-04 DWG: 5943 |  |  |  |  |  |  |

## Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7

