Low Voltage, 0.6Ω, Dual SPDT Analog Switch

DESCRIPTION

The DG2735A is a low voltage, low on-resistance, dual single-pole/double-throw (SPDT) monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low-power, high speed, low on-resistance, and small package size, the DG2735A, is ideal for portable and battery powered applications.
The DG2735A has an operation range from 1.65 V to 5.5 V single supply. The DG2735A has two separate control pins for independent control of the two SPDT switches.
The DG2735A is guaranteed 1.65 V logic compatible, allowing easy interface with low voltage DSP or MCU control logic and ideal for one cell Li-ion battery direct power.
The switch conducts signals within the power rails equally well in both directions when on, and blocks up to the power supply level when off. Break-before-make is guaranteed.
The DG2735A is built on Vishay Siliconix's sub micron CMOS low voltage process technology and provides greater than 400 mA latch-up protection, as tested per JESD78A.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device terminations. DG2735A is offered in a miniQFN package. The miniQFN package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-GE4" suffix. The nickel-palladium-gold device terminations meet all JEDEC ${ }^{\circledR}$ standards for reflow and MSL ratings.

FEATURES

- Low voltage operation (1.65 V to 5.5 V)
- Low on-resistance - R_{ON} : 0.5Ω at 2.7 V
- Fast switching: $\mathrm{t}_{\mathrm{ON}}=55 \mathrm{~ns}$ at 2.7 V
- $\mathrm{T}_{\text {Off }}=15 \mathrm{~ns}$ at 2.7 V
- Latch-up current > 400 mA (JESD78)

RoHS COMPLIANT HALOGEN FREE

- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Reduced power consumption
- High accuracy
- Reduce board space
- TTL/1.65 V logic compatible

APPLICATIONS

- Cellular phones
- Speaker headset switching
- Audio and video signal routing
- PCMCIA cards
- Battery operated systems
- Portable media players
- Handheld test instruments

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE	NC1, 2	NO1, 2
LOGIC	ON	OFF
0	OFF	ON
1		

ORDERING INFORMATION						
PART NUMBER	CONFIGURATION	SWITCH FUNCTION	TEMP. RANGE	PACKAGE	REEL QUANTITY	
DG2735ADN-T1-GE4	Dual DPST	NC / NO	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	miniQFN10, $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm}$	3000	

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
PARAMETER	SYMBOL	LIMIT	UNIT
Reference to GND		-0.3 V to +6 V	V
		-0.3 V to ($\mathrm{V}++0.3$)	
Current (Any terminal except NO, NC or COM)		30	mA
Continuous Current (NO, NC, or COM)		± 300	
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		± 500	
Storage Temperature (D Suffix)		-65 to +150	${ }^{\circ} \mathrm{C}$
		208	mW
Latch Up Current	JESD78A	>400	mA
ESD - HBM	ANSI / ESDA / JEDEC JS-001	>5000	V
ESD - CDM	JESD22-C101	>1000	
ESD - MM	JESD22-A115	>200	

Notes

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.
c. Derate $4 \mathrm{~mW} / \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

DG2735A

SPECIFICATIONS (V+ = 3 V)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ or 1.65 V e	TEMP. ${ }^{\text {a }}$	LIMITS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			UNIT
				MIN. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {b }}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.65	-	-	V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full	-	-	0.4	
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Full	-	6	-	pF
Input Current	$\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1	-	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Break-Before-Make Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {BBM }}$	$\begin{gathered} \mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	1	15	-	ns
Turn-On Time ${ }^{\text {e }}$	t_{ON}		Room	-	28	78	
			Full	-	-	80	
Turn-Off Time ${ }^{\text {e }}$	toff		Room	-	13	58	
			Full	-	-	60	
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$	Room	-	-70	-	dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$			-	-90	-	
3dB bandwidth ${ }^{\text {d }}$		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	Room	-	120	-	MHz
NO, NC Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, or $\mathrm{V}+\mathrm{f}$, $=1 \mathrm{MHz}$	Room	-	40	-	pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$			-	40	-	
Channel On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$			-	120	-	
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$			-	120	-	
Power Supply							
Power Supply Range	V+		-	1.65	-	5.5	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-	-	1	$\mu \mathrm{A}$

Notes

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, not subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DG2735A

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

$R_{\text {ON }}$ vs. $V_{\text {COM }}$ and Supply Voltage

Ron vs. Analog Voltage and Temperature

Ron vs. Analog Voltage and Temperature

Supply Current vs. Temperature

DG2735A

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Leakage Current vs. Temperature

Supply Current vs. Switching Frequency

Switching Threshold vs. Supply Voltage

Switching Time vs. Temperature

Insertion Loss, Off-Isolation Crosstalk vs. Frequency

Supply Current vs. $V_{I N}$

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

Fig. 2 - Break-Before-Make Interval

TEST CIRCUITS

IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

Fig. 4 - Off-Isolation

Fig. 5-Channel Off/On Capacitance

[^0]Vishay Siliconix

MINI QFN-10L CASE OUTLINE

DIM	MILLIMETERS			INCHES		
	MIN.	NAM.	MAX.	MIN.	NAM.	MAX.
A	0.50	0.55	0.60	0.0197	0.0217	0.0236
A1	0.00	-	0.05	0.000	-	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
c	0.15 REF			0.006 REF		
D	1.75	1.80	1.85	0.069	0.071	0.073
E	1.35	1.40	1.45	0.053	0.055	0.057
e	0.40 BSC				0.016 BSC	
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.0177	0.0197	0.0217

ECN T-07039-Rev. A, 12-Feb-07
DWG: 5957

RECOMMENDED MINIMUM PADS FOR MINI QFN 10L

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg? 67590.

