0.45Ω, Low Voltage Dual SPDT Analog Switch with Negative Swing Audio Capability

DESCRIPTION

The DG2750 is a dual SPDT low on-resistance switch designed to from a single 1.6 V to 5.5 V power supply. It is a bi-directional switch, and is capable of switching negative swing audio without the need for a coupling capacitor. With a single power supply, the audio signal can swing over the range from ((V+)-5) to $\mathrm{V}+$.
Guaranteed to operate with 1.4 V logic when $\mathrm{V}+$ is in the range of 2.7 V to 5.5 V , the DG 2750 will allow an easy interface with low voltage DSP or ASIC control logic.
The DG2750 is built on sub micron CMOS low voltage process technology, has very low quiescent current, and provides greater than 600 mA latch-up protection, as tested per JESD78.
The DG2750 is assembled in compact mQFN10, $1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm} \times 0.55 \mathrm{~mm}$ and ultra thin UTMQFN of 0.35 mm thickness.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device termination. The miniQFN-10 package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-E4" suffix to the ordering part number. The nickel-palladium-gold device terminations meet all JEDEC ${ }^{\circledR}$ standards for reflow and MSL rating.
As a further sign of Vishay Siliconix's commitment, the DG2750 is fully RoHS-complaint and halogen-free.

FEATURES

- 1.6 V to 5.5 V single power rail operation
- Capable to switch negative swing audio without DC blocking capacitor
- Low signal distortion: THD+N <-98 dB
- Low on-resistance
- 1.4 V high logic
- Latch-up current > 600 mA (JESD78)
- ESD (HBM): 8 kV
- Reduced power consumption
- Reduce board space
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Cellular phones
- Portable media players
- Computer and game machine
- Handheld healthcare and instruments

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

ORDERING INFORMATION			
PART NUMBER	TEMPERATURE RANGE	PACKAGE	SIZE
DG2750DN-T1-E4	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	miniQFN- 10	$1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm} \times 0.55 \mathrm{~mm}$
DG2750DN1-T1-GE4		UTMQFN- 10	$1.4 \mathrm{~mm} \times 1.8 \mathrm{~mm} \times 0.35 \mathrm{~mm}$

TRUTH TABLE, DG2750

IN1 (PIN 4)	IN2 (PIN 8)	FUNCTION
0	X	COM1 $=$ NC1
1	X	COM1 $=$ NO1
X	0	COM2 $=$ NC2
X	1	COM2 $=$ NO2

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
PARAMETER		LIMIT	UNIT
Reference to GND	V+, IN	-0.3 to +6	V
	COM, NO, NC ${ }^{\text {a }}$	$(\mathrm{V}+)-5.5$ or -2.5 whichever higher, ($\mathrm{V}++0.3$)	
Current (Any Terminal except COM, NO, NC, IN)		30	mA
Continuous Current (COM, NO, NC, IN)		± 250	
Peak Current (Pulsed at $1 \mathrm{~ms}, 10$ \% Duty Cycle)		± 500	
Storage Temperature (D Suffix)		-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	miniQFN-10 ${ }^{\text {c }}$	208	mW
ESD (Human Body Model) I/O to GND		8	kV
Latch-up (per JESD78)		600	mA

Notes

a. Signals on COM, NO, NC, exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$

SPECIFICATIONS ($\mathrm{V}+=2.7 \mathrm{~V}, \pm 10 \%$)

PARAMETER	SYMBOL	TEST CONDITIONSOTHERWISE UNLESS SPECIFIED	TEMP. ${ }^{\text {a }}$	$\begin{gathered} \text { LIMITS } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNIT
				MIN. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-2.5	-	V+	V
On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \\ \left.\mathrm{~V}_{\mathrm{S}}=(\mathrm{V}+)-4.5 \mathrm{~V},-1 \mathrm{~V}, 0 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}, \mathrm{~V}+\right), \\ \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{gathered}$	Room	-	0.45	1	Ω
			Full	-	-	1.3	
On-Resistance Match	$\Delta \mathrm{R}_{\text {ON }}$		Room	-	0.1	-	
On-Resistance Flatness	$\mathrm{R}_{\text {ON }}$ Flatness		Room	-	0.3	-	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} / \mathrm{NC}(\text { (ff) }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=-2.5 \mathrm{~V} \text { or } 2.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{COM}}=2.5 \mathrm{~V} \text { or }-2.5 \mathrm{~V} \end{gathered}$	Room	-	50	-	nA
	$\mathrm{I}_{\text {com(off) }}$		Full	-250	-	250	
Channel On Leakage Current	ICOM(on)		Room	-	50	-	
			Full	-250	-	250	
Digital Control							
Input Voltage High	$\mathrm{V}_{\text {INH }}$	$\mathrm{V}+=2.7 \mathrm{~V}$ to 4.3 V	Full	1.4	-	-	V
Input Voltage Low	$\mathrm{V}_{\text {INL }}$		Full	-	-	0.6	
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Room	-	6.5	-	pF
Input Current	$\mathrm{l}_{\text {inL }}$ or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1	-	1	$\mu \mathrm{A}$

SPECIFICATIONS (V+ = 2.7 V, ± 10 \%)							
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED	TEMP. ${ }^{\text {a }}$	$\begin{gathered} \text { LIMITS } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNIT
				MIN. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {b }}$	
Dynamic Characteristics							
Break-Before-Make Time ${ }^{\text {e, d }}$	$t_{\text {BBM }}$	$\begin{gathered} \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	800	1160	-	ns
			Full	1000	-	-	
Enable Turn-On Time ${ }^{\text {e, d }}$	$\mathrm{t}_{\mathrm{ON}(\mathrm{EN})}$		Room	-	1200	2100	
			Full	-	-	2500	
Enable Turn-Off Time ${ }^{\text {e, d }}$	$\mathrm{t}_{\text {OFF (EN) }}$		Room	-	33	130	
			Full	-	-	150	
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$	Room	-	4	-	pC
Total Harmonic Distortion Plus Noise ${ }^{\text {d }}$	THD+N	$\begin{gathered} \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}_{\mathrm{PP}}, \\ \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{DC} \text { bias }=0 \mathrm{~V} \end{gathered}$		-	<-98	-	dB
Off-Isolation ${ }^{\text {d }}$	OIRR	$\begin{gathered} V_{+}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ \mathrm{f}=300 \mathrm{kHz} \end{gathered}$		-	-54	-	dB
Crosstalk ${ }^{\text {d, } f}$	$\mathrm{X}_{\text {TALK }}$			-	-60	-	
Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{V}+=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega,-3 \mathrm{~dB}$		-	49	-	MHz
Channel-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NC} / \mathrm{NO} \text { (off) }}$	$\mathrm{V}+=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		-	36	-	pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {COM/NC/NO(on) }}$			-	106	-	
Power Supply							
Power Supply Range	V+			1.6	-	5.5	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, or $\mathrm{V}+$	Full	-	-	2	$\mu \mathrm{A}$

Notes

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet
c. Typical values are for design aid only, not guaranteed nor subject to production testing
d. Guarantee by design, not subjected to production test
e. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}+$ voltage to perform proper function
f. Crosstalk measured between channels

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

On-Resistance vs. V_{D} and Single Supply Voltage

On-Resistance vs. Analog Voltage and Temperature

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

Leakage Current vs. Temperature

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Switching Threshold vs. Supply Voltage

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

TEST CIRCUITS

Fig. 1 - Switching Time

Fig. 2 - Break-Before-Make Interval

TEST CIRCUITS

IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

Fig. 4 - Off-Isolation

Fig. 5 - Channel Off/On Capacitance

MINI QFN-10L CASE OUTLINE

DIM	MILLIMETERS			INCHES		
	MIN.	NAM.	MAX.	MIN.	NAM.	MAX.
A	0.45	0.55	0.60	0.0177	0.0217	0.0236
A1	0.00	-	0.05	0.000	-	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
c	0.150 or 0.127 REF ${ }^{(1)}$			0.006 or 0.005 REF (1)		
D	1.70	1.80	1.90	0.067	0.071	0.075
E	1.30	1.40	1.50	0.051	0.055	0.059
e	0.40 BSC			0.016 BSC		
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.0177	0.0197	0.0217

Note
${ }^{(1)}$ The dimension depends on the leadframe that assembly house used.

```
ECN T16-0163-Rev. B, 16-May-16
```

DWG: 5957

RECOMMENDED MINIMUM PADS FOR MINI QFN 10L

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T $\underline{M A X 314 C P E}+$ BU4066BCFV-E2 MAX313CPE + BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL DG2535EDQ-
T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7 DIO1269LP10

