700 MHz, -3 dB Bandwidth; Single SPDT Analog Switch

DESCRIPTION

DG3257 is a low $R_{\text {ON }}$, high bandwidth analog switch configured in single SPDT. It achieves 5Ω switch on resistance, greater than $700 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth with 5 pF load, and a channel to channel crosstalk at -32 dB and isolation at -33 dB . Fabricated with high density sub micro CMOS process, the DG3257 provides low parasitic capacitance, handles bidirectional signal flow with minimized phase distortion. Guaranteed 1.4 V logic high threshold makes it possible to interface directly with low voltage MCUs.
The DG3257 is designed for a wide range of operating voltages from 1.65 V to 5.5 V that can be driven directly from one cell Li-ion battery. On-chip protection circuit protects again fault events when $\mathrm{V}+$ goes zero. Latch up current is 300 mA , as per JESD78, and its ESD tolerance exceeds 6 kV .
Packaged in ultra small μ DFN6L ($1 \mathrm{~mm} \times 1 \mathrm{~mm}$), it is ideal for portable high speed mix signal switching application.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device termination.
The μ DFN6L package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-GE4" suffix to the ordering part number. The nickel-palladium-gold device terminations meet all JEDEC ${ }^{\circledR}$ standards for reflow and MSL rating. As a further sign of Vishay Siliconix's commitment, the DG3257 is fully RoHS-complaint.

FEATURES

- 1.65 V to 5.5 V single supply operation
- Low resistance: $5 \Omega /$ typ. at 4.2 V
- Switch ON capacitance: 9 pF typical
- -3 dB bandwidth: 700 MHz
- Power down protection
- Signal swing over V+ capable (when signal swing over V+, signal pin current: typically ($\left.\mathrm{V}_{\mathrm{S}}-0.6 \mathrm{~V}\right) / 120 \Omega$)
- Control logic S pin voltage can go beyond $\mathrm{V}+$
- Break before make switching
- Latch up current: 300 mA (JESD78)
- ESD / HBM: 6 kV,
- ESD / CDM: 1 kV
- TTL/CMOS compatible
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Smart phones
- Tablet, e-readers
- Camera, audio devices
- Computer and peripherals
- Data storage
- IoT
- Wearable
- Portable healthcare

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

ORDERING INFORMATION		
TEMP. RANGE	PACKAGE	PART NUMBER
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	μ DFN- 6 L	DG3257DN-T1-GE4

DG3257

TRUTH TABLE		
IN	NC	NO
0	ON	OFF
1	OFF	ON

PIN DESCRIPTIONS	
PIN NAME	DESCRIPTION
IN	Logic select Input
V+	Power pin
GND	Power ground pin
NC	Normal close data port
NO	Normal open data port
COM	Common data port

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
PARAMETER	CONDITIONS	LIMITS	UNIT
V+, S	Reference to GND	-0.3 to +6	V
COM, NO, NC	Reference to GND	-0.3 to +6	
Maximum continuous switch current		± 50	mA
Maximum pulse switch current	Pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle	± 100	
Thermal resistance		407	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD / HBM	EIA / JESD22-A114-A	6000	V
ESD / CDM	EIA /JESD22-C101A	1000	
Temperature			
Operating temperature		-40 to +85	${ }^{\circ} \mathrm{C}$
Max. operating junction temperature		150	
Operating junction temperature		125	
Storage temperature		-65 to +150	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS $\mathrm{V}_{+}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.5 \mathrm{~V}$ OTHERWISE UNLESS SPECIFIED	$+25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$	TYP. a / MAX.	UNIT
Analog Switch						
Analog signal range	$\mathrm{V}_{\text {ANALOG }}$		0 to 5.5			V
Drain-source on-resistance	$\mathrm{R}_{\text {DS(on) }}$	$\mathrm{V}_{+}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=0 \mathrm{~V}$ to $\mathrm{V}+, \mathrm{I}_{\mathrm{S}_{ \pm}}=8 \mathrm{~mA}$	28	-	Typ.	Ω
			47	54	Max.	
		$\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{S}_{ \pm}}=8 \mathrm{~mA}$	7	-	Typ.	
			8	9	Max.	
			6	-	Typ.	
		mA	7	8	Max.	
			5	-	Typ.	
		$\mathrm{V}+=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{S} \pm}=8 \mathrm{~mA}$	6	7	Max.	
			5	-	Typ.	
		$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{S} \pm}=8 \mathrm{~mA}$	5.5	6	Max.	
On-resistance flatness	$\mathrm{R}_{\text {flat(on) }}$	$\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=0 \mathrm{~V}, 1 \mathrm{~V}, \mathrm{I}_{\mathrm{S}_{ \pm}}=8 \mathrm{~mA}$	2	-	Typ.	
			3	6	Max.	
On-resistance matching	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}+=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}+$, $\mathrm{I}_{\mathrm{S}_{ \pm}}=8 \mathrm{~mA}$	0.4	-	Typ.	
			0.6	0.8	Max.	
Switch off leakage current	$\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{d} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO} / \mathrm{NO}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	± 0.2	-	Typ.	nA
			-	± 20	Max.	
Channel on leakage current	$I_{\text {d(on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NC} / \mathrm{NO}}=\text { open } \end{gathered}$	± 0.2	-	Typ.	
			-	± 20	Max.	
Power down leakage	$\mathrm{I}_{\text {COM(PD) }}$	$\mathrm{V}+=0 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=4.5 \mathrm{~V}$	1	-	Max.	$\mu \mathrm{A}$

SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS $\mathrm{V}_{+}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.5 \mathrm{~V}$ OTHERWISE UNLESS SPECIFIED	$+25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$	TYP. a / MAX.	UNIT
Digital Control						
Input voltage high	$\mathrm{V}_{\text {INH }}$	$\mathrm{V}+=3 \mathrm{~V}$	-	1.2	Min.	V
		$\mathrm{V}+=5 \mathrm{~V}$	-	1.4	Min.	
Input voltage low	$\mathrm{V}_{\text {INL }}$	$\mathrm{V}+=3 \mathrm{~V}$	-	0.45	Max.	
		$\mathrm{V}+=5 \mathrm{~V}$	-	0.5	Max.	
Input leakage	1 N	$\mathrm{V}_{+}=0 \mathrm{~V}, 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{+}	0.001	-	Typ.	$\mu \mathrm{A}$
			-	0.23	Max.	
Digital input capacitance	$\mathrm{C}_{\text {IN }}$		5.6	-	Typ.	pF
Dynamic Characteristics						
Break-before-make-time	topen	$\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	6	-	Typ.	ns
			-	2	Min.	
Turn-on time	t_{ON}	$\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}+; \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	17	-	Typ.	
			40	50	Max.	
Turn-off time	$\mathrm{t}_{\text {OFF }}$		9	-	Typ.	
			35	45	Max.	
Propagation delay ${ }^{\text {b }}$	$\mathrm{t}_{\text {PD }}$		100	-	Typ.	ps
Charge injection ${ }^{\text {b }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V}$	4	-	Typ.	pC
Off-isolation ${ }^{\text {b }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=240 \mathrm{MHz}$	-33	-	Typ.	dB
Crosstalk ${ }^{\text {b }}$	$\mathrm{X}_{\text {TALK }}$		-32	-	Typ.	
Insertion loss ${ }^{\text {b }}$		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	-0.62	-	Typ.	
Total harmonic distortion + Noise ${ }^{\text {b }}$	THD + N	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{PP}}=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz	0.025	-	Typ.	\%
Bandwidth, $-3 \mathrm{~dB}{ }^{\text {b }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	714	-	Typ.	MHz
Source off capacitance ${ }^{\text {b }}$	$\mathrm{C}_{\mathrm{S} \text { (off) }}$	$\mathrm{f}=240 \mathrm{MHz}$	3	-	Typ.	pF
Drain on capacitance ${ }^{\text {b }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		9	-	Typ.	
Power Requirements						
Power supply range		GND $=0 \mathrm{~V}$	+1.65 / +5.5 min. / max.			V
	I+	Digital Inputs 0 V or $\mathrm{V}+$, $\mathrm{V}+=2.7 \mathrm{~V}$ to 5.5 V	0.001	-	Typ.	$\mu \mathrm{A}$
Power supply current			-	0.4	Max.	
		Digital inputs $1.8 \mathrm{~V}, \mathrm{~V}+=3 \mathrm{~V}$	1	-	Typ.	
			-	1.5	Max.	

Notes

a. Typical values are for design aid only, not guaranteed nor subject to production testing.
b. Guarantee by design, not subjected to production test.

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

$R_{\text {ON }}$ vs. V_{D} and Single Supply Voltage

Ron vs. Analog Voltage and Temperature

Ron vs. Analog Voltage and Temperature

Supply Current vs. Temperature

Supply Current vs. Temperature

Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Supply Current vs. Input Switching Frequency

Switching Threshold vs. Supply Voltage

THD + N vs. Frequency

Leakage Current vs. Temperature

Supply Current vs. VIN

$\mathrm{X}_{\text {TALK }}, \mathrm{V}_{+}=5 \mathrm{~V}$

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{\text {OUT }}=D_{ \pm}\left(\frac{R_{L}}{R_{L}+R_{\text {ON }}}\right)
$$

Logic "1" = Switch on
Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

Fig. 2 - Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

TEST CIRCUITS

Fig. 4 - Off-Isolation

Fig. 5 - Channel Off / On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?75945.

$\mu D F N-6 L 1$ mm x 1 mm Case Outline

Bottom view

Side view

DIM.	MILLIMETERS			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.32	0.35	0.38	0.013	0.014	0.015
A1	0.00	-	0.05	0.000	-	0.002
A2	0.10 Ref.			0.004 Ref.		
b	0.12	0.15	0.18	0.005	0.006	0.007
D	0.95	1.00	1.05	0.037	0.039	0.041
E	0.95	1.00	1.05	0.037	0.039	0.041
e	0.35 BSC			0.014 BSC		
K	0.30 Ref.			0.012 Ref.		
K1	0.075 Ref.			0.003 Ref.		
K2	0.05 Ref.			0.002 Ref.		
L	0.27	0.30	0.33	0.011	0.012	0.013

Notes

(1) Use millimeters as the primary measurement.
(2) Dimensioning and tolerances conform to ASME Y14.5M-1994.
(3) N is the number of terminals.

Nd and Ne is the number of terminals in each D and E site respectively.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
(5) The pin 1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body.
(6) Package warpage max. 0.05 mm .

```
ECN: T16-0553-Rev. A, 26-Sep-16
DWG: }605
```


Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL

LTC201ACN\#PBF 74LV4066DB,118 FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7 DIO1269LP10 DG307BDJ-E3

