Low-Power, High-Speed CMOS Analog Switches

Abstract

DESCRIPTION The DG401B, DG403B, DG405B monolithic analog switches are replacements for the popular DG401/403/405 analog switches and provide improved performance, combining high speed (t_{ON} : 100 ns, typ) with low power consumption make the DG401B series ideal for portable and battery powered applications. Built on the Vishay Siliconix proprietary high-voltage silicongate process to achieve high voltage rating and superior switch on/off performance, break-before-make is guaranteed for the SPDT configurations. Each switch conducts equally well in both directions when on, and blocks up to 30 V peak-to-peak when off On-resistance is very flat over the full $\pm 15 \mathrm{~V}$ analog range. The DG401B has two independent SPST switches. The DG403B has four SPST switches in NO/NC combinations. The DG405B has four switches in two SPST pairs (see Functional Block Diagrams and Pin Configurations on pages 1 and 2.) The DG401B, DG403B, DG405B is available in both 16-pin plastic dip and 16-pin SOIC packages. As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100 \% matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

FEATURES

- 44 V supply max rating
- $\pm 15 \mathrm{~V}$ analog signal range
- On-resistance - $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$: 23Ω
- Low leakage - $\mathrm{I}_{\mathrm{D}(\text { on })}: 40 \mathrm{pA}$
- Fast switching - $\mathrm{t}_{\mathrm{ON}}: 100 \mathrm{~ns}$
- Upgrade to DG401B, DG403B, DG405B
- TTL, CMOS compatible
- Single supply capability

BENEFITS

- Wide dynamic range
- Break-before-make switching action (DG403B only)
- Simple interfacing

APPLICATIONS

- Audio and video switching
- Sample-and-hold circuits
- Test equipment
- PBX, PABX

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Two SPST Switches per Package

TRUTH TABLE	
Logic	Switch
0	OFF
1	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG403B
Dual-In-Line and SOIC

Top View

DG405B

Four SPST Switches in Two Pairs per Package

TRUTH TABLE		
Logic	$\mathbf{S W}_{\mathbf{1}}, \mathbf{\mathbf { S W } _ { \mathbf { 2 } }}$	$\mathbf{S W}_{\mathbf{3}}, \mathbf{S W}_{\mathbf{4}}$
0	OFF	ON
1	ON	OFF

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic " 1 " $\geq 2.4 \mathrm{~V}$

Four SPST Switches in Two Pairs per Package

TRUTH TABLE	
Logic	Switch
0	OFF
1	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic " 1 " $\geq 2.4 \mathrm{~V}$

Top View

ORDERING INFORMATION			
Standard Commercial Part Number	Lead (Pb)-free Commercial Part Number	Package	Temperature Range
DG401BDJ	DG401BDJ-E3	16-Pin Plastic Dip	- 40 to $85{ }^{\circ} \mathrm{C}$
DG403BDJ	DG403BDJ-E3		
DG405BDJ	DG405BDJ-E3		
DG401BDY	DG401BDY-E3	16-Pin Narrow SOIC	
DG403BDY	DG403BDY-E3		
DG405BDY	DG405BDY-E3		
DG401BDY-T1	DG401BDY-T1-E3	16-Pin Narrow SOIC With Tape and Reel	
DG403BDY-T1	DG403BDY-T1-E3		
DG405BDY-T1	DG405BDY-T1-E3		

ABSOLUTE MAXIMUM RATINGS				
Parameter		Symbol	Limit	Unit
V+ to V-			44	V
GND to V-			25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$			$(\mathrm{V}-)-0.3 \mathrm{~V} \text { to }(\mathrm{V}+)+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first	
Current (Any Terminal) Continuous			30	mA
Current, S or D (Pulsed $1 \mathrm{~ms} 10 \%$ duty)			100	
Storage Temperature	(DJ, DY Suffix)		-65 to 125	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$		450	mW
	$16-\mathrm{Pin}$ SOIC ${ }^{\text {d }}$		600	

Notes:
a. Signals on $\mathrm{S}_{\mathrm{X}}, \mathrm{D}_{\mathrm{X}}$, or IN_{X} exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS ${ }^{\text {a }}$							
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Limits $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Unit
				Min. ${ }^{\text {d }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-15		15	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}+=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \end{aligned}$	Room Full		23	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	
Δ Drain-Source On-Resistance	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}, 0 \mathrm{~V} \\ \mathrm{~V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \end{gathered}$	Room Full		0.72	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} V+=16.5, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} \end{gathered}$	Room Hot	$\begin{gathered} \hline-0.5 \\ -5 \end{gathered}$	-0.01	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	nA
	$I_{\text {(off) }}$		Room Hot	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	-0.01	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V} \end{gathered}$	Room Hot	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	-0.04	$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Digital Control							
Input Current $\mathrm{V}_{\text {IN }}$ Low	IIL	$\mathrm{V}_{\text {IN }}$ under test $=0.8 \mathrm{~V}$, all other $=2.4 \mathrm{~V}$	Full	-1	0.005	1	$\mu \mathrm{A}$
Input Current $\mathrm{V}_{\text {IN }}$ High	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {IN }}$ under test $=2.4 \mathrm{~V}$, all other $=0.8 \mathrm{~V}$	Full	-1	0.005	1	
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \text { see figure } 2 \end{gathered}$	Room		100	150	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room		60	100	
Break-Before-Make Time Delay (DG403B)	t_{D}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room	5	12		
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=10000 \mathrm{pF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room		60		pC
Off Isolation Reject Ratio	OIRR	$\mathrm{R}_{\mathrm{L}}=100 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-81.7		dB
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {TALK }}$		Room		-94.8		
Source Off Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	Room		12		pF
Drain Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room		12		
Channel On Capacitance	$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\text {S(on) }}$		Room		39		

SPECIFICATIONS ${ }^{\text {a }}$							
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	$\underset{\mathbf{b}}{\text { Temp. }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {d }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {d }}$	
Power Supplies							
Positive Supply Current	$1+$	$\begin{gathered} \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		0.250	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	mA
Negative Supply Current	I-		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} \hline-0.5 \\ -1 \end{gathered}$	0.25		
Ground Current	$\mathrm{I}_{\mathrm{GND}}$		Room Full	$\begin{gathered} -0.5 \\ -1 \end{gathered}$	0.25		

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Supply Current vs. Temperature

Supply Current vs. Switching Frequency

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Ron $_{\text {Os }}$ vs. Analog Voltage and Supply Voltage

R $_{\text {ON }}$ vs. Analog Voltage and Temperature

$R_{\text {ON }}$ vs. Analog Voltage and Single Supply Voltage

Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

SCHEMATIC DIAGRAM (Typical Channel)

Figure 1.

TEST CIRCUITS

V_{O} is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.

C_{L} (includes fixture and stray capacitance)

* $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{ON}}, \mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$ for $\mathrm{t}_{\mathrm{OFF}}$

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Figure 2. Switching Time

Figure 3. Break-Before-Make

Figure 4. Charge Injection

TEST CIRCUITS

Figure 5. Off Isolation

Figure 7. Crosstalk

$\mathrm{C}=\mathrm{RF}$ bypass
Figure 6. Insertion Loss

Figure 8. Capacitances

APPLICATIONS

Figure 9. Stereo Source Selector

Dual Slope Integrators

The DG403B is well suited to configure a selectable slope integrator. One control signal selects the timing capacitor C_{1} or C_{2}. Another one selects $\mathrm{e}_{\text {in }}$ or discharges the capacitor in preparation for the next integration cycle.

Band-Pass Switched Capacitor Filter

Single-pole double-throw switches are a common element for switched capacitor networks and filters. The fast switching times and low leakage of the DG403B allow for higher clock rates and consequently higher filter operating frequencies.

Figure 10. Dual Slope Integrator

Figure 11. Band-Pass Switched Capacitor Filter

APPLICATIONS

Peak Detector

A_{3} acting as a comparator provides the logic drive for operating SW_{1}. The output of A_{2} is fed back to A_{3} and compared to the analog input ein. If $\mathrm{e}_{\text {in }}>\mathrm{e}_{\text {out }}$ the output of A_{3} is high keeping SW_{1} closed. This allows C_{1} to charge up to
the analog input voltage. When $e_{\text {in }}$ goes below $e_{\text {out }} A_{3}$ goes negative, turning SW_{1} off. The system will therefore store the most positive analog input experienced.

Figure 12. Positive Peak Detector

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	1.35	1.75	0.053	0.069
$\mathbf{A}_{\mathbf{1}}$	0.10	0.20	0.004	0.008
\mathbf{B}	0.38	0.51	0.015	0.020
C	0.18	0.23	0.007	0.009
\mathbf{D}	9.80	10.00	0.385	0.393
E	3.80	4.00	0.149	0.157
\mathbf{e}	1.27 BSC	0.050 BSC		
\mathbf{H}	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
\varnothing	0°	8°	0°	8°
ECN: S-03946-Rev. F, 09-Jul-01 DWG: 5300				

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	3.81	5.08	0.150	0.200
$\mathbf{A}_{\mathbf{1}}$	0.38	1.27	0.015	0.050
\mathbf{B}	0.38	0.51	0.015	0.020
$\mathbf{B}_{\mathbf{1}}$	0.89	1.65	0.035	0.065
\mathbf{C}	0.20	0.30	0.008	0.012
\mathbf{D}	18.93	21.33	0.745	0.840
\mathbf{E}	7.62	8.26	0.300	0.325
$\mathbf{E}_{\mathbf{1}}$	5.59	7.11	0.220	0.280
$\mathbf{e}_{\mathbf{1}}$	2.29	2.79	0.090	0.110
$\mathbf{e}_{\mathbf{A}}$	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{\mathbf { Q } _ { \mathbf { 1 } }}$	1.27	2.03	0.050	0.080
\mathbf{S}	0.38	1.52	.015	0.060
ECN: S-03946-Rev. D, 09-Jul-01				
DWG: 5482				

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G DG302BDJ-E3 ADG741BKSZ-REEL ADG742BKSZ5-REEL7 PI5A100WE

