

16-Ch/Dual 8-Ch High-Performance CMOS Analog Multiplexers

DESCRIPTION

The DG406 is a 16 channel single-ended analog multiplexer designed to connect one of sixteen inputs to a common output as determined by a 4-bit binary address. The DG407 selects one of eight differential inputs to a common differential output. Break-before-make switching action protects against momentary shorting of inputs.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control inputs, address (A_x) and enable (EN) are TTL compatible over the full specified operating temperature range.

Applications for the DG406, DG407 include high speed data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.

Designed in the 44 V silicon-gate CMOS process, the absolute maximum voltage rating is extended to 44 V, allowing operation with \pm 20 V supplies. Additionally single (12 V) supply operation is allowed. An epitaxial layer prevents latchup.

For applications information please request documents 70601 and 70604.

Dual-In-Line and SOIC Wide-Body

FEATURES

Low on-resistance - $R_{DS(on)}$: 50 Ω Low charge injection - Q: 15 pC

Fast transition time - t_{TRANS}: 200 ns

Low power: 0.2 mW

Single supply capability

44 V supply max. rating

Pb-free

BENEFITS

- Higher accuracy
- Reduced glitching
- Improved data throughput
- Reduced power consumption
- · Increased ruggedness
- Wide supply ranges: ± 5 V to ± 20 V

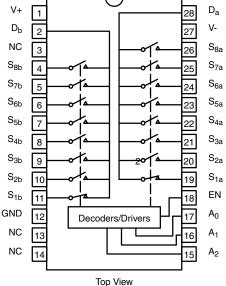
APPLICATIONS

- Data acquisition systems
- · Audio signal routing
- Medical instrumentation
- · ATE systems
- · Battery powered systems
- High-rel systems
- · Single supply systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

V+ D NC V-NC 26 S₁₆ 25 S_7 S₁₅ S_6 5 24 S₁₄ S_5 6 S_{13} S_4 22 S₁₂ S_3 8 21 S₁₁ S_2 9 20 S₁₀ S_1 19 10 ΕN S_9 11 18 GND 17 A_0 12 Decoders/Drivers

* Pb containing terminations are not RoHS compliant, exemptions may apply

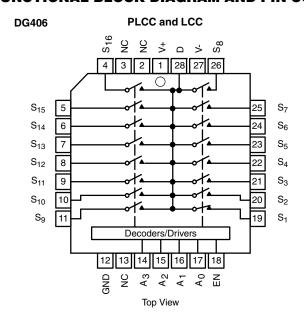

 A_1

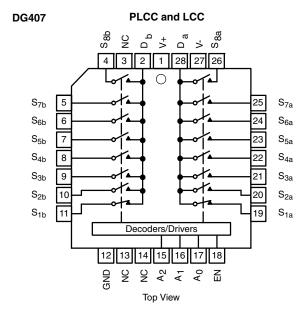
15 A₂

16

Dual-In-Line and SOIC Wide-Body

V+ 1 28


NC


 A_3

DG406

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUT	TRUTH TABLE (DG406)							
A ₃	A ₂	A ₁	A ₀	EN	On Switch			
Х	Х	Х	Х	0	None			
0	0	0	0	1	1			
0	0	0	1	1	2			
0	0	1	0	1	3			
0	0	1	1	1	4			
0	1	0	0	1	5			
0	1	0	1	1	6			
0	1	1	0	1	7			
0	1	1	1	1	8			
1	0	0	0	1	9			
1	0	0	1	1	10			
1	0	1	0	1	11			
1	0	1	1	1	12			
1	1	0	0	1	13			
1	1	0	1	1	14			
1	1	1	0	1	15			
1	1	1	1	1	16			

TRUTH	TRUTH TABLE (DG407)							
A ₂	A ₁	A ₀	EN	On Switch Pair				
Х	Х	Х	0	None				
0	0	0	1	1				
0	0	1	1	2				
0	1	0	1	3				
0	1	1	1	4				
1	0	0	1	5				
1	0	1	1	6				
1	1	0	1	7				
1	1	1	1	8				

Logic "0" = $V_{AL} \le 0.8 \text{ V}$ Logic "1" = $V_{AH} \ge 2.4 \text{ V}$ X = Do not Care

ORDERING INFORMATION (DG406)						
Temp. Range	Package	Part Number				
	28-Pin Plastic DIP	DG406DJ DG406DJ-E3				
- 40 °C to 85 °C	28-Pin PLCC	DG406DN DG406DN-T1-E3				
	28-Pin Widebody SOIC	DG406DW DG406DW-E3				

ORDERING INFORMATION (DG407)					
Temp. Range	Package	Part Number			
	28-Pin Plastic DIP	DG407DJ DG407DJ-E3			
- 40 °C to 85 °C	28-Pin PLCC	DG407DN DG407DN-T1-E3			
	28-Pin Widebody SOIC	DG407DW DG407DW-E3			

ABSOLUTE MAXIMUM RATINGS					
Parameter		Limit	Unit		
Voltages Referenced to V-	V+	44			
voltages Referenced to v-	GND	25	V		
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 V or 20 mA, whichever occurs first	,		
Current (Any terminal)		30	mA		
Peak Current, S or D (Pulsed at 1 ms, 10 % duty cycle max.)		100			
Storage Temperature	(AK, AZ Suffix)	- 65 to 150	°C		
Storage remperature	(DJ, DN Suffix)	- 65 to 125	C		
	28-Pin Plastic DIP ^b	625	mW		
	28-Pin CerDIP ^d	1.2	W		
Power Dissipation (Package) ^b	28-Pin Plastic PLCC ^c	450	mW		
	LCC-28 ^e	1.35	W		
	28-Pin Widebody SOIC	450	mW		

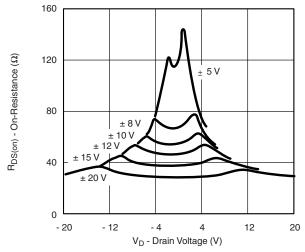
Notes:

- a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 6 mW/°C above 75°C.
- d. Derate 12 mW/°C above 75°C.
- e. Derate 13.5 mW/°C above 75°C .

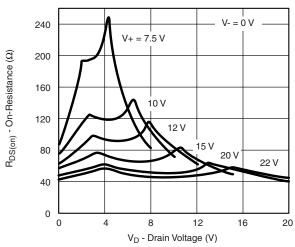
DG406, DG407 Vishay Siliconix

SPECIFICATIONS ^a										
		Test Condition Unless Otherwise S	pecified				uffix o 125 °C	_	uffix to 85 °C	
Parameter	Symbol	V+ = 15 V, V- = - V _{AL} = 0.8 V, V _{AH} =		Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min.d	Max. ^d	Unit
Analog Switch	Oymboi	VAL - 0.0 V, VAH -	Z.7 V	Temp.	iyp.	141111.	wax.	141111-	wax.	Oilit
Analog Signal Range ^e	V _{ANALOG}			Full	1	- 15	15	- 15	15	V
Drain-Source		$V_D = \pm 10 \text{ V, I}_S = -10 \text{ V}$	10 mA	Room			100		100	
On-Resistance	R _{DS(on)}	sequence each swi		Full	50		125		125	Ω
R _{DS(on)} Matching Between Channels ^g	$\Delta R_{DS(on)}$	V _D = ± 10 V		Room	5					%
Source Off Leakage Current	I _{S(off)}	V _{EN} = 0 V		Room Full	0.01	- 0.5 - 50	0.5 50	- 0.5 - 5	0.5 5	
Drain Off Leakage Current	I _{D(off)}	$V_{D} = \pm 10 \text{ V}$ $V_{S} = \pm 10 \text{ V}$	DG406	Room Full	0.04	- 1 - 200	1 200	- 1 - 40	1 40	
Diam on Leakage Current	יט(סוו)	.5 = .0 .	DG407	Room Full	0.04	- 1 - 100	1 100	- 1 - 20	1 20	nA
Drain On Leakage Current	I _{D(on)}	$V_S = V_D = \pm 10$ sequence each	DG406	Room Full	0.04	- 1 - 200	1 200	- 1 - 40	1 40	
v	(on)	switch on	DG407	Room Full	0.04	- 1 - 100	1 100	- 1 - 20	1 20	
Digital Control										
Logic High Input Voltage	V_{INH}			Full		2.4		2.4		V
Logic Low Input Voltage	V_{INL}			Full			8.0		0.8	•
Logic High Input Current	I _{AH}	$V_A = 2.4 \text{ V}, 15$		Full		- 1	1	- 1	1	μΑ
Logic Low Input Current	I_{AL}	$V_{EN} = 0 \text{ V}, 2.4 \text{ V}, V_{A}$	v = 0 V	Full		- 1	1	- 1	1	i .
Logic Input Capacitance	C _{in}	f = 1 MHz		Room	7					pF
Dynamic Characteristics										
Transition Time	t _{TRANS}	see figure 2		Room Full	200		350 450		350 450	
Break-Before-Make Interval	t _{OPEN}	see figure 4		Room Full	50	25 10		25 10		ns
Enable Turn-On Time	t _{ON(EN)}	see figure 3		Room Full	150		200 400		200 400	
Enable Turn-Off Time	t _{OFF(EN)}			Room Full	70		150 300		150 300	
Charge Injection	Q	$V_S = 0 \text{ V, } C_L = 1 \text{ nF, F}$		Room	15					рC
Off Isolation ^h	OIRR	$V_{EN} = 0 \text{ V, R}_{L} = 1$ f = 100 kHz		Room	- 69					dB
Source Off Capacitance	C _{S(off)}	$V_{EN} = 0 \text{ V}, V_{S} = 0 \text{ V}, f$	= 1 MHz	Room	8					
Drain Off Capacitance	C _{D(off)}	V _{EN} = 0 V		Room	130					
	- D(011)	$V_D = 0 V$	DG407	Room	65					pF
Drain On Capacitance	C _{D(on)}	f = 1 MHz	DG406 DG407	Room Room	140 70					
Power Supplies										
Positive Supply Current	l+	V _{EN} = V _A = 0 or	5 V	Room Full	13		30 75		30 75	
Negative Supply Current	Į-	VEN - VA - 0 01		Room Full	- 0.01	- 1 - 10		- 1 - 10		μΑ
Positive Supply Current	I+	V _{EN} = 2.4 V, V _A =	- 0 V	Room Full	50		500 900		500 700	μΑ
Negative Supply Current	I-	V _{EN} - 2.4 v, V _A =	. J v	Room Full	- 0.01	- 20 - 20		- 20 - 20		

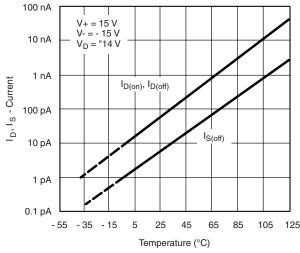
		Test Condition Unless Otherwise S	pecified				uffix o 125°C		uffix to 85 °C	
Parameter	Symbol	V+ = 12 V, V- = 0 V _{AL} = 0.8 V, V _{AH} =		Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch										
Analog Signal Range ^e	V _{ANALOG}			Full		0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	V _D = 3 V, 10 V, I _S =	- 1 mA	Room	90		120		120	Ω
R _{DS(on)} Matching Between Channels ^g	$\Delta R_{DS(on)}$	sequence each switch on		Room	5					%
Source Off Leakage Current	I _{S(off)}	V _{EN} = 0 V		Room	0.01					
Due in Off Lealure Comment	1	$V_D = 10 \text{ V or } 0.5 \text{ V}$	DG406	Room	0.04					
Drain Off Leakage Current	I _{D(off)}	$V_{S} = 0.5 \text{ V or } 10 \text{ V}$	DG407	Room	0.04					nA
		$V_{S} = V_{D} = \pm 10$	DG406	Room	0.04					1
Drain On Leakage Current	I _{D(on)}	sequence each switch on	DG407	Room	0.04					
Dynamic Characteristics										
Switching Time of Multiplexer	t _{OPEN}	$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, V$	_{IN} = 2.4 V	Room	300		450		450	
Enable Turn-On Time	t _{ON(EN)}	$V_{INH} = 2.4 \text{ V}, V_{INL}$	= 0 V	Room	250		600		600	ns
Enable Turn-Off Time	t _{OFF(EN)}	$V_{S1} = 5 V$		Room	150		300		300	
Charge Injection	Q	$C_L = 1 \text{ nF, } V_S = 6 \text{ V,}$	$R_S = 0$	Room	20					рС
Power Supplies										
Positive Supply Current	I+	V - 0 V or 5 V V -	0 \/ or E \/	Room Full	13		30 75		30 75	
Negative Supply Current	l-	$V_{EN} = 0 \text{ V or 5 V, } V_A =$	0 4 01 2 4	Room Full	- 0.01	- 20 - 20		- 20 - 20		μΑ

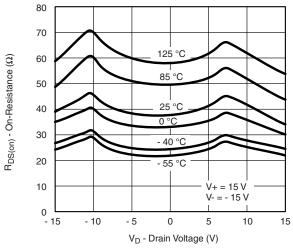

- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test. f. $V_{\rm IN}$ = input voltage to perform proper function.

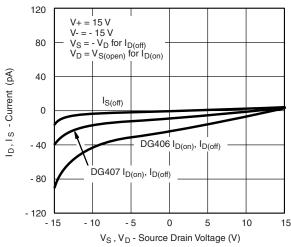
- g. $\Delta R_{DS(on)} = R_{DS(on)} \max$. $R_{DS(on)} \min$. h. Worst case isolation occurs on Channel 4 due to proximity to the drain pin.

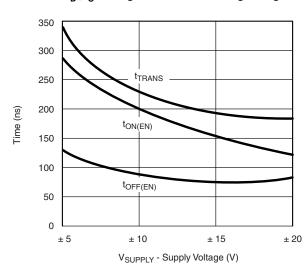

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VISHAY.

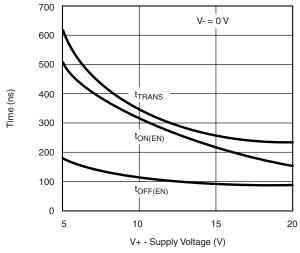

TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)


 $R_{DS(on)}$ vs. V_D and Supply

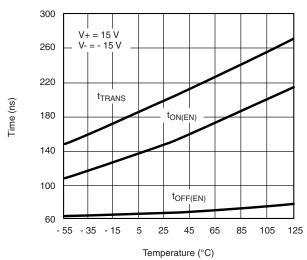

 $R_{DS(on)}\, vs. \; V_D$ and Supply

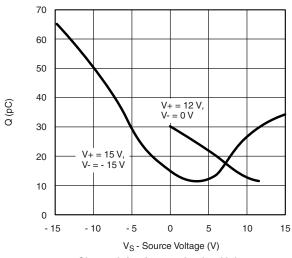

 \mathbf{I}_{D} , \mathbf{I}_{S} Leakages vs. Temperature

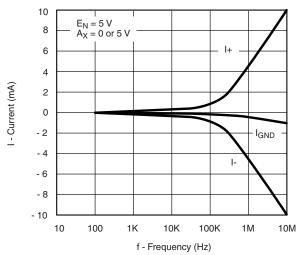
R_{DS(on)} vs. V_D and Temperature

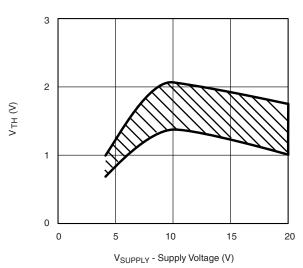

I_D , I_S Leakage Currents vs. Analog Voltage


Switching Times vs. Bipolar Supplies


TYPICAL CHARACTERISTICS $(T_A = 25 \, ^{\circ}C, \text{ unless otherwise noted})$


Switching Times vs. Single Supply


Off-Isolation vs. Frequency


t_{ON}/t_{OFF} vs. Temperature

Charge Injection vs. Analog Voltage

Supply Currents vs. Switching Frequency

Switching Threshold vs. Supply Voltage

VISHAY

SCHEMATIC DIAGRAM (Typical Channel)

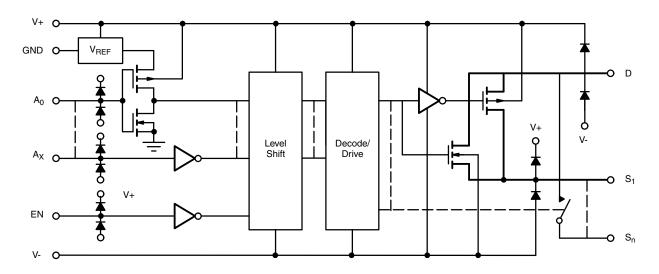


Figure 1.

TEST CIRCUITS

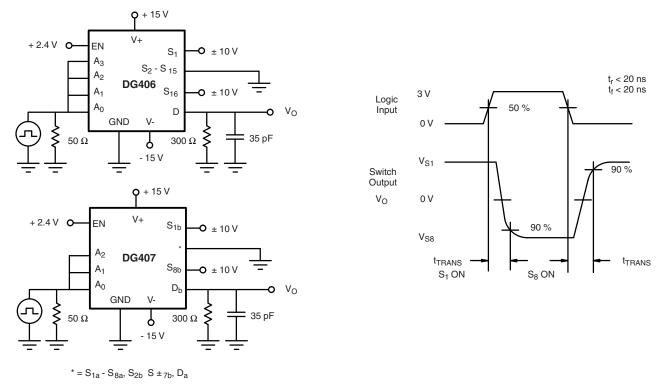


Figure 2. Transition Time

TEST CIRCUITS

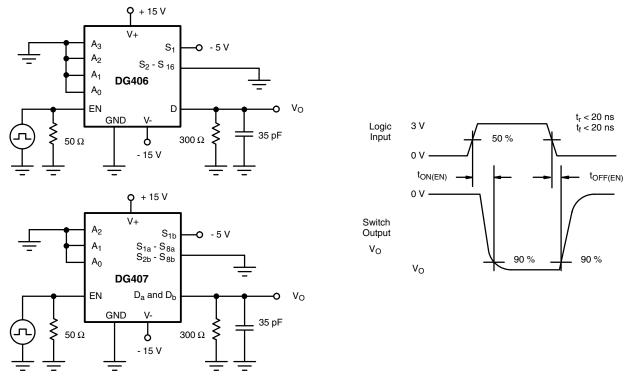


Figure 3. Enable Switching Time

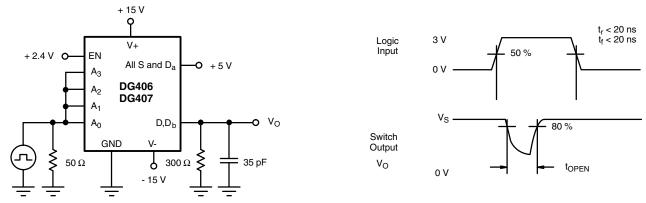


Figure 4. Break-Before-Make Interval

VISHAY.

APPLICATIONS HINTS

Sampling speed is limited by two consecutive events: the transition time of the multiplexer, and the settling time of the sampled signal at the output.

 t_{TRANS} is given on the data sheet. Settling time at the load depends on several parameters: $R_{DS(on)}$ of the multiplexer, source impedance, multiplexer and load capacitances, charge injection of the multiplexer and accuracy desired.

The settling time for the multiplexer alone can be derived from the model shown in figure 5. Assuming a low impedance signal source like that presented by an op amp or a buffer amplifier, the settling time of the RC network for a given accuracy is equal to $n\tau$:

% ACCURACY	# BITS	N
0.25	8	6
0.012	12	9
0.0017	15	11

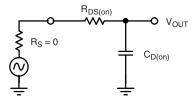


Figure 5. Simplified Model of One Multiplexer Channel

The maximum sampling frequency of the multiplexer is:

$$\begin{split} f_S &= \frac{1}{N(t_{SETTLING} + t_{TRANS})} \\ &\quad \text{where N = number of channels to scan} \\ &\quad t_{SETTLING} = n_T = n \ x \ R_{DS(on)} \ x \ C_{D(on)} \end{split}$$

For the DG406 then, at room temp and for 12-bit accuracy, using the maximum limits:

$$f_{s} = \frac{1}{16 (9 \times 100 \Omega \times 10^{-12} F) + 300 \times 10^{-12} s}$$
 (2)

or
$$f_s = 694 \text{ kHz}$$
 (3)

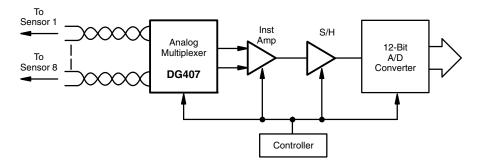
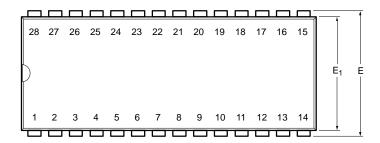
From the sampling theorem, to properly recover the original signal, the sampling frequency should be more than twice the maximum component frequency of the original signal. This assumes perfect bandlimiting. In a real application sampling at three to four times the filter cutoff frequency is a good practice.

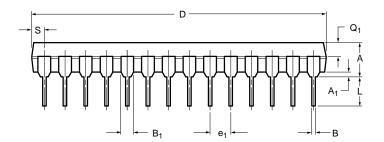
Therefore from equation 2 above:

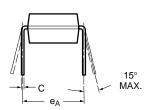
$$f_c = \frac{1}{4} \times f_s = 173 \text{ kHz}$$
 (4)

From this we can see that the DG406 can be used to sample 16 different signals whose maximum component frequency can be as high as 173 kHz. If for example, two channels are used to double sample the same incoming signal then its cutoff frequency can be doubled.

The block diagram shown in Figure 6 illustrates a typical data acquisition front end suitable for low-level analog signals. Differential multiplexing of small signals is preferred since this method helps to reject any common mode noise. This is especially important when the sensors are located at a distance and it may eliminate the need for individual amplifiers. A low $R_{\rm DS(on)}$, low leakage multiplexer like the DG407 helps to reduce measurement errors. The low power dissipation of the DG407 minimizes on-chip thermal gradients which can cause errors due to temperature mismatch along the parasitic thermocouple paths. Please refer to Application Note AN203 for additional information.

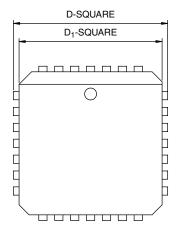

Figure 6. Measuring low-level analog signals is more accurate when using a differential multiplexing technique

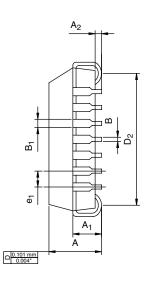

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70061.

PDIP: 28-LEAD

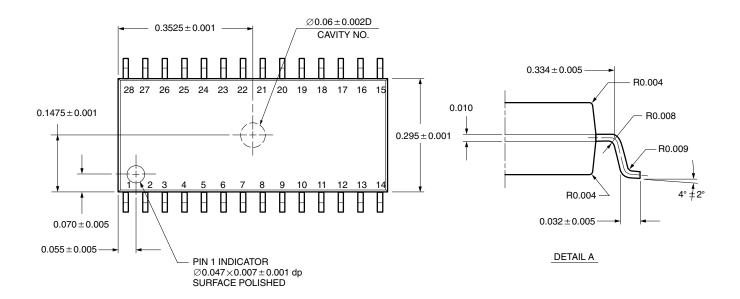
	MILLIM	IETERS	INC	HES
Dim	Min	Max	Min	Max
A	2.29	5.08	0.090	0.200
A ₁	0.39	1.77	0.015	0.070
В	0.38	0.56	0.015	0.022
B ₁	0.89	1.65	0.035	0.065
C	0.204	0.30	0.008	0.012
D	35.10	39.70	1.380	1.565
E	15.24	15.88	0.600	0.625
E ₁	13.21	14.73	0.520	0.580
e ₁	2.29	2.79	0.090	0.110
eA	14.99	15.49	0.590	0.610
L	2.60	5.08	0.100	0.200
Q ₁	0.95	2.345	0.0375	0.0925
S	0.995	2.665	0.0375	0.105

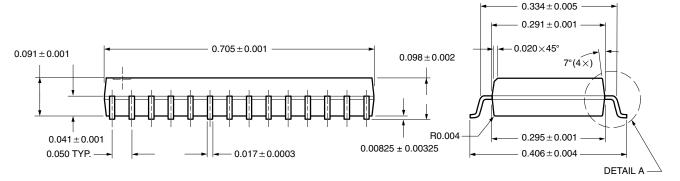
ECN: S-03946—Rev. F, 09-Jul-01 DWG: 5488


Document Number: 71243 06-Jul-01


www.vishay.com

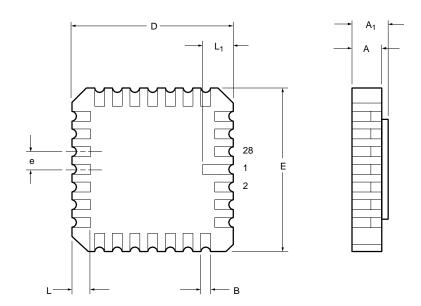
PLCC: 28-LEAD




DIM.	MILLIN	IETERS	INCHES			
	MIN.	MAX.	MIN.	MAX.		
Α	4.20	4.57	0.165	0.180		
A ₁	2.29	3.04	0.090	0.120		
A ₂	0.51	-	0.020	-		
В	0.331	0.553	0.013	0.021		
B ₁	0.661	0.812	0.026	0.032		
D	12.32	12.57	0.485	0.495		
D ₁	11.430	11.582	0.450	0.456		
D_2	9.91	10.92	0.390	0.430		
e ₁	1.27	27 BSC 0.050 BSC				
ECNI, TOO	FCN: T00 0766 Pay D 00 Can 00					

ECN: T09-0766-Rev. D, 28-Sep-09 DWG: 5491

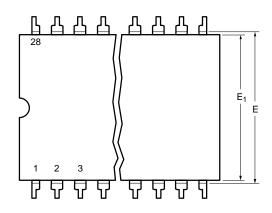
SOIC (WIDE-BODY): 28-LEADS

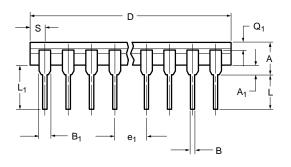

All Dimensions In Inches

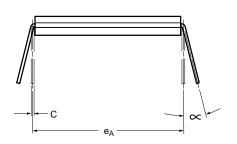
ECN: E11-2209-Rev. D, 01-Aug-11

DWG: 5850

28-LEAD LCC


	MILLIN	IETERS	INCHES		
Dim	Min	Max	Min	Max	
A	1.37	2.24	0.054	0.088	
A ₁	1.63	2.54	0.064	0.100	
В	0.56	0.71	0.022	0.028	
D	11.23	11.63	0.442	0.458	
E	11.23	11.63	0.442	0.458	
е	1.27 BSC		0.050	BSC	
L	1.14	1.40	0.045	0.055	
L₁	1.96	2.36	0.077	0.093	


Document Number: 71278


02-Jul-01 www.visnay.com

CERDIP: 28-LEAD

	MILLIMETERS		INC	HES	
Dim	Min	Max	Min	Max	
Α	4.06	5.92	0.160	0.232	
A ₁	0.38	1.52	0.015	0.060	
В	0.38	0.51	0.015	0.020	
B ₁	1.14	1.65	0.045	0.065	
С	0.20	0.30	0.008	0.012	
D	36.58	37.08	1.440	1.460	
Е	15.24	15.88	0.600	0.625	
E ₁	12.95	13.46	0.510	0.530	
e ₁	2.54 BSC		0.100	BSC	
e _A	15.24	BSC	0.600 BSC		
L	3.18	3.81	0.125	0.150	
L ₁	3.81	5.08	0.150	0.200	
Q ₁	1.27	2.16	0.050	0.085	
S	1.52	2.29	0.060	0.090	
∞	0°	15°	0°	15°	
ECN: S-03946—Rev. E, 09-Jul-01 DWG: 5434					

Document Number: 71283 www.vishay.com 03-Jul-01 www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC
PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX
MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX
ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7
LTC4305IDHD#PBF CD4053BPWRG4 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112
74HC4053DB.112 74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4053DB.112 74HCT4067D.112
74HCT4351D.112 74LV4051PW.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ
ADG1438BRUZ AD7506JNZ