

Precision 8-Ch / Dual 4-Ch Low Voltage Analog Multiplexers

DESCRIPTION

The DG408L, DG409L are low voltage pin-for-pin compatible companion devices to the industry standard DG408, DG409 with improved performance.

Using BiCMOS wafer fabrication technology allows the DG408L, DG409L to operate on single and dual supplies. Single supply voltage ranges from 3 V to 12 V while dual supply operation is recommended with \pm 3 V to \pm 6 V.

The DG408L is an 8 channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3 bit binary address (A_0 , A_1 , A_2). The DG409L is a dual 4 channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2 bit binary address (A_0 , A_1). Break-before-make switching action to protect against momentary crosstalk between adjacent channels.

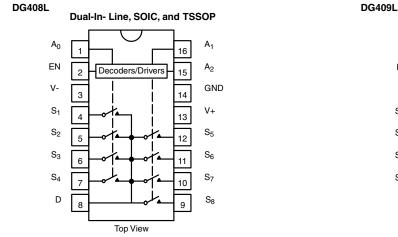
The DG408L, DG409L provides lower on-resistance, faster switching time, lower leakage, less power consumption, and higher off-isolation than the DG408, DG409.

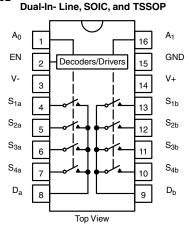
FEATURES

- · Pin-for-pin compatibility with DG408, DG409
- 2.7 V to 12 V single supply or \pm 3 V to \pm 6 V dual supply operation
- Lower on-resistance: $R_{DS(on)}$ 17 Ω typ.
- Fast switching: t_{ON} 38 ns, t_{OFF} 18 ns
- Break-before-make guaranteed
- Low leakage: I_{S(OFF)} 0.2 nA max.
- Low charge injection: 1 pC
- TTL, CMOS, LV logic (3 V) compatible
- 82 dB off-isolation at 1 MHz
- 2000 V ESD protection (HBM)
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.


BENEFITS


- High accuracy
- Single and dual power rail capacity
- Wide operating voltage range
- Simple logic interface

APPLICATIONS

- Data acquisition systems
- Battery operated equipment
- Portable test equipment
- Sample and hold circuits
- Communication systems
- SDSL, DSLAM
- Audio and video signal routing

FUNCTIONAL BLOCK DIAGRAMS AND PIN CONFIGURATIONS

1 For technical questions, contact: <u>analogswitchsupport@vishay.com</u> Document Number: 71342

HALOGEN

Vishay Siliconix

TRUTH	TRUTH TABLE (DG408L)									
A ₂	A ₁	A ₀	EN	ON SWITCH						
Х	Х	Х	0	None						
0	0	0	1	1						
0	0	1	1	2						
0	1	0	1	3						
0	1	1	1	4						
1	0	0	1	5						
1	0	1	1	6						
1	1	0	1	7						
1	1	1	1	8						

TRUTH	TRUTH TABLE (DG409L)									
A ₁	A ₀	ON SWITCH								
Х	Х	0	None							
0	0	1	1							
0	1	1	2							
1	0	1	3							
1	1	1	4							

 $\begin{array}{l} Logic \ ``0" = V_{AL} \leq 0.8 \ V \\ Logic \ ``1" = V_{AH} \geq 2.4 \ V \\ X = do \ not \ care \end{array}$

Note

• For low and high voltage levels for V_{AX} and V_{EN} consult "Digital Control" parameters for specific V+ operation.

ORDERING INFORMATION (DG408L)			ORDERING I	IFORMATION (D	G409L)
TEMP. RANGE	PACKAGE	PART NUMBER	TEMP. RANGE	PACKAGE	PART NUMBE
40 °C to 195 °C	DG408LDY 16-pin SOIC DG408LDY-E3 DG408LDY-T1 DG408LDY-T1 DG408LDY-T1-E3 40 %0 to ±05 %0	16-pin SOIC			
-40 °C to +85 °C	16-pin TSSOP	DG408LDQ DG408LDQ-E3 DG408LDQ-T1 DG408LDQ-T1-E3	-40 °C to +85 °C	16-pin TSSOP	DG409LDQ DG409LDQ-E3 DG409LDQ-T DG409LDQ-T1-

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	LIMIT	UNIT					
Voltage Referenced V+ to V- e		14					
GND		7	V				
Digital Inputs ^a , V _S , V _D	(V-) - 0.3 to (V) + 0.3						
Current (any terminal)	30						
Peak Current, S or D (pulsed at 1 ms, 10 % du	100	— mA					
Starage Temperature	(A suffix)	-65 to +150	°C				
Storage Temperature	(D suffix)	-65 to +125	U				
	16-pin plastic TSSOP ^c	650					
Dower Dissinction (pool/ogo) b	16-pin narrow SOIC ^c	600					
Power Dissipation (package) ^b	16-pin CerDIP ^d	900	mW				
	LCC-20 e	750	7				

Notes

a. Signals on S_X, D_X, A_X, or EN exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads soldered or welded to PC board.

b. All leads soldered of weided to PC

c. Derate 7.6 mW/°C above 75 °C.

d. Derate 12 mW/°C above 75 °C e. Derate 10 mW/°C above 75 °C

2

		TEST CONDITIONS UNLESS OTHERWISE			A SUFFIX -55 °C to +125 °C		D SUFFIX -40 °C to +85 °C		
PARAMETER	SYMBOL	$\begin{array}{l} \textbf{SPECIFIED} \\ V+ = 12 \ V, \ \pm \ 10 \ \%, \ V- = 0 \ V \\ V_{\text{EN}} = 0.8 \ V \ or \ 2.4 \ V^{\text{f}} \end{array}$	TEMP. ^b	TYP. d	MIN. °	MAX. °	MIN. °	MAX. °	UNIT
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full	-	0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	$V_D = 10.8 V$, $V_D = 2 V \text{ or } 9 V$, $I_S = 10 \text{ mA}$, sequence each switch on	Room Full	17 -	-	29 38	-	29 35	
R _{DS(on)} Matching Between Channels ^g	ΔR_{DS}	$V_{\rm D} = 10.8 \text{ V}, V_{\rm D} = 2 \text{ V or } 9 \text{ V},$ $I_{\rm S} = 10 \text{ mA},$	Room	1	-	3	-	3	Ω
On-Resistance Flatness ⁱ	R _{FLAT(on)}	$I_{\rm S} = 10$ MA,	Room	3	-	7		7	
			Room	-	-1	1	-1	1	
Switch Off Leakage	I _{S(off)}	$V_{EN} = 0 V, V_{D} = 11 V \text{ or } 1 V,$	Full	-	-15	15	-10	10	
Current ^a	1	V _S = 1 V or 11 V	Room	-	-1	1	-1	1	nA
	I _{D(off)}		Full	-	-15	15	-10	10	
Channel On Leakage	I _{D(on)}	V _S = V _D = 1 V or 11 V	Room	-	-1	1	-1	1	
Current ^a	U(on)	v5 - vD - i v oi ii v	Full	-	-15	15	-10	10	
Digital Control	-								
Logic High Input Voltage	V _{INH}		Full	-	2.4	-	2.4	- V	
Logic Low Input Voltage	V _{INL}		Full	-	-	0.8	-	0.8	v
Input Current	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.8 \text{ V}$	Full	-	-1.5	1.5	-1	1	μA
Dynamic Characteristics	I			1	Г <u> </u>	1		-	
Transition Time	t _{TRANS}		Room Full	- 30	-	60 68	-	60 65	
		$V_{S(all)} = V_{DA} = 5 V.$	Room	11	1	-	1	-	
Break-Before-Make Time	t _{OPEN}		Full	-	-	_	-	-	
			Room	38	-	55	-	55	ns
Enable Turn-On Time	t _{ON(EN)}	V _{AX} = 0 V, V _{S1} = 5 V (DG408L)	Full	-	-	60	-	60	
		V _{AX} = 0 V, V _{S1b} = 5 V (DG409L)	Room	18	-	25	_	25	
Enable Turn-Off Time	t _{OFF(EN)}	see figure 3	Full	-	-	30	-	30	
Charge Injection ^e	Q	$\label{eq:CL} \begin{split} C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V,} \\ R_{GEN} = 0 \ \Omega \end{split}$	Room	1	-	5	-	5	рС
Off Isolation e, h	OIRR		Room	-70	-	-	-	-	d٦
Crosstalk ^e	X _{TALK}	f = 100 kHz, R _L = 1 kΩ	Room	-82	-	-	-	-	dB
Source Off Capacitance ^e	C _{S(off)}	f = 1 MHz, V_S = 0 V, V_{EN} = 0 V	Room	7	-	-	-	-	
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 2.4 \text{ V}, V_{EN} = 0 \text{ V}$	Room	20	-	-	-	-	pF
Drain On Capacitance ^e	C _{D(on)}	$ f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 2.4 \text{ V} \\ (\text{DG409L only}) $	Room	31	-	-	-	-	יץ
Power Supplies									
Power Supply Range	V+			-	3	12	3	12	V
Power Supply Current	l+	$V_{EN} = V_A = 0 V \text{ or } 5 V$	Room	0.2	-	0.7	-	0.7	μA

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.

b. Room = 25 °C, Full = as determined by the operating temperature suffix.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \max$. $R_{DS(on)} \min$.
- h. Worst case isolation occurs on Channel 4 do to proximity to the drain pin.

i. R_{DS(on)} flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.

S16-0276-Rev. J, 22-Feb-16

Vishay Siliconix

SPECIFICATIONS (Dual Supply V+ = 5 V, V - = -5 V)									
		TEST CONDITIONS UNLESS OTHERWISE			A SUFFIX -55 °C to +125 °C		D SUFFIX -40 °C to +85 °C		
PARAMETER	SYMBOL	$\begin{array}{c} \textbf{SPECIFIED} \\ V+ = 5 \ V, \ \pm \ 10 \ \%, \ V- = -5 \ V \\ V_{EN} = 0.6 \ V \ or \ 2.4 \ V^{f} \end{array}$	TEMP. ^b	TYP. d	MIN. °	MAX.°	MIN. °	MAX.°	UNIT
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full	-	-5	5	-5	5	V
Drain-Source On-Resistance	R _{DS(on)}	$V_D = \pm 3.5 \text{ V}, \text{ I}_S = 10 \text{ mA},$ sequence each switch on	Room Full	20	-	40	-	40 50	Ω
				-	-	50	-		
	I _{S(off)}	V+ = 5.5. V- = 5.5 V	Room Full	-	-1 -15	1 15	-1 -10	1 10	
Switch Off Leakage Current ^a		$V_{EN} = 0 V, V_{D} = \pm 4.5 V,$	Room	-	-15	1	-10	10	
	I _{D(off)}	$V_{S} = \pm 4.5 V$	Full	-	-15	15	-10	10	nA
	I _{D(on)}	V+ = 5.5 V, V- = -5.5 V,	Room	-	-1	1	-1	1	
Channel On Leakage Current ^a		$V_{EN} = 2.4 \text{ V}, V_D = \pm 4.5 \text{ V},$ $V_S = \pm 4.5 \text{ V}$	Full	-	-15	15	-10	10	
Digital Control									
Logic High Input Voltage	V _{INH}		Full	-	2.4	-	2.4	-	V
Logic Low Input Voltage	V _{INL}		Full	-	-	0.6	-	0.6	v
Input Current ^a	l _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.6 \text{ V}$	Full	-	-1.5	1.5	-1	1	μA
Dynamic Characteristics									
		$V_{S1} = 3.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG408L)$	Room	30	-	60	-	60	
Transition Time ^e	t _{TRANS}	$V_{S1b} = 3.5 V, V_{S4b} = 0 V, (DG409L)$ see figure 2	Full	-	-	78	-	65	
Break-Before-Make Time e	+	$V_{S(all)} = V_{DA} = 3.5 V,$	Room	8	1	-	1	-	
Dieak-Deloie-Make Time	t _{OPEN}	see figure 4	Full	-	-	-	-	-	ns
Enable Turn-On Time ^e	town		Room	25	-	55	-	55	
	t _{ON(EN)}	$V_{AX} = 0 V, V_{S1} = 3.5 V (DG408L)$ $V_{AX} = 0 V, V_{S1b} = 3.5 V (DG409L)$	Full	-	-	68	-	60	
Enable Turn-Off Time ^e	t _{OFF(EN)}	see figure 3	Room	20	-	40	-	40	
	-OFF(EN)		Full	-	-	50	-	45	
Source Off Capacitance ^e	C _{S(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	6	-	-	-	-	
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	15	-	-	-	-	pF
Drain On Capacitance ^e	C _{D(on)}	on) $f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$ Room 29 -	-	-	-	-			

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.

b. Room = 25 °C, full = as determined by the operating temperature suffix.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.

d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

e. Guaranteed by design, not subject to production test.

f. V_{IN} = input voltage to perform proper function.

g. $\Delta R_{DS(on)} = R_{DS(on)} max. - R_{DS(on)} min.$

h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

i. R_{DS(on)} flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.

4

SPECIFICATIONS (S	SPECIFICATIONS (Single Supply 5 V)								
		TEST CONDITIONS UNLESS OTHERWISE			A SUFFIX -55 °C to +125 °C		D SUFFIX -40 °C to +85 °C		
PARAMETER	SYMBOL	$\begin{array}{c} \textbf{SPECIFIED} \\ V+ = 5 \ V, \ \pm \ 10 \ \%, \ V- = 0 \ V \\ V_{\text{EN}} = 0.6 \ V \ \text{or} \ 2.4 \ V^{\text{f}} \end{array}$	TEMP. ^b	TYP. d	MIN. °	MAX. °	MIN. °	MAX. °	UNIT
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full	-	0	5	0	5	V
Drain-Source On-Resistance	R _{DS(on)}	$V_{+} = 4.5 V$, V_{D} or $V_{S} = 1 V$ or $3.5 V$, $I_{S} = 5 mA$	Room Full	35	-	49 62	-	40 62	
R _{DS(on)} Matching Between Channels ^g	ΔR_{DS}	$V_{+} = 4.5 V, V_{D} = 1 V \text{ or } 3.5 V,$	Room	1.5	_	3	_	3	Ω
On-Resistance Flatness i	R _{FLAT(on)}	I _S = 5 mA	Room	-	-	4	-	4	
			Room	-	-1	1	-1	1	
Switch Off Leakage	I _{S(off)}	V+ = 5.5 V, V _S = 1 V or 4 V,	Full	-	-15	15	-10	10	
Current ^a		$V_D = 4 V \text{ or } 1 V$	Room	-	-1	1	-1	1	
	I _{D(off)}		Full	-	-15	15	-10	10	nA
Channel On Leakage		$V+=5.5 \text{ V}, V_{D}=V_{S}=1 \text{ V or } 4 \text{ V},$ sequence each switch on	Room	-	-1	1	-1	1	
Current ^a	I _{D(on)}		Full	-	-15	15	-10	10	
Digital Control									
Logic High Input Voltage	V _{INH}	V+ = 5 V	Full	-	2.4	-	2.4	-	V
Logic Low Input Voltage	V _{INL}	V+ = 5 V	Full	-	-	0.6	-	0.6	
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4 \text{ V or } 0.6 \text{ V}$	Full	-	-1.5	1.5	-1	1	μA
Dynamic Characteristics					_				
		$V_{S1} = 3.5 \text{ V}, V_{S8} = 0 \text{ V}, (DG408L)$	Room	44	-	125	-	125	
Transition Time ^e	t _{TRANS}	$V_{S1b} = 3.5 V, V_{S4b} = 0 V, (DG409L)$ see figure 2	Full	-	-	138	-	135	
Break-Before-Make Time ^e	t _{OPEN}	$V_{S(all)} = V_{DA} = 3.5 V,$	Room	17	1	-	1	-	
Break Berere Make Hine	OPEN	see figure 4	Full	-	-	-	-	-	ns
Enable Turn-On Time ^e	t _{ON(EN)}		Room	43	-	60	-	60	
	UN(EN)	$V_{AX} = 0 V, V_{S1} = 3.5 V (DG408L)$ $V_{AX} = 0 V, V_{S1b} = 3.5 V (DG409L)$	Full	-	-	70	-	65	
Enable Turn-Off Time ^e	t _{OFF(EN)}	see figure 3	Room	26	-	45	-	45	
	"OFF(EN)		Full	-	-	60	-	50	
Charge Injection ^e	Q	C_L = 1 nF, R_{GEN} = 0 Ω , V_{GEN} = 0 V	Room	-1	-	-	-	-	рС
Off Isolation ^{e, h}	OIRR	f = 100 kHz, R _I = 1 kΩ	Room	-70	-	-	-	-	dB
Crosstalk ^e	X _{TALK}	$i = 100 \text{ km}^2, \text{ m}^2 = 1 \text{ ks}^2$	Room	-80	-	-	-	-	uD
Source Off Capacitance e	C _{S(off)}	f = 1 MHz, V_S = 0 V, V_{EN} = 0 V	Room	8	-	-	-	-	
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz, V_D = 0 V, V_{EN} = 0 V	Room	21	-	-	-	-	pF
Drain On Capacitance ^e	C _{D(on)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 2.4 \text{ V}$	Room	32	-	-	-	-	

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.

b. Room = 25 °C, full = as determined by the operating temperature suffix.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

e. Guaranteed by design, not subject to production test.

- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \max$. $R_{DS(on)} \min$.
- h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

i. R_{DS(on)} flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.

Vishay Siliconix

SPECIFICATIONS (Single Supply 3 V)									
		TEST CONDITIONS UNLESS OTHERWISE			A SUFFIX -55 °C to +125 °C			JFFIX o +85 °C	
PARAMETER	SYMBOL	$\begin{array}{c} \textbf{SPECIFIED} \\ V+=3 \ V, \ \pm \ 10 \ \%, \ V-=0 \ V \\ V_{EN}=0.4 \ V \ or \ 2 \ V^{f} \end{array}$	TEMP. ^b	TYP. d	MIN. °	MAX.°	MIN. °	MAX.°	UNIT
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full	-	0	3	0	3	V
Drain-Source On-Resistance	R _{DS(on)}	V+ = 2.7 V, V _D = 0.5 or 2.2 V, I _S = 5 mA	Room Full	60 -	-	80 105	-	80 100	Ω
	I _{S(off)}		Room Full	-	-1 -15	1 15	-1 -10	1 10	
Switch Off Leakage Current ^a		V+ = 3.3 V, V _S = 2 or 1 V, V _D = 1 or 2 V	Room	_	-1	1	-10	10	
	I _{D(off)}		Full	_	-15	15	-10	10	nA
Channel On Leakage		$V_{+} = 3.3 V, V_{D} = V_{S} = 1 V \text{ or } 2 V,$	Room	-	-1	1	-1	1	
Current ^a	I _{D(on)}	sequence each switch on	Full	-	-15	15	-10	10	
Digital Control									
Logic High Input Voltage	V _{INH}		Full	-	2	-	2	-	V
Logic Low Input Voltage	V _{INL}		Full	-	-	0.4	-	0.4	v
Input Current ^a	I _{IN}	$V_{AX} = V_{EN} = 2.4$ V or 0.4 V	Full	-	-1.5	1.5	-1	1	μA
Dynamic Characteristics									
Transition Time	t _{TRANS}	$V_{S1} = 1.5 V, V_{S8} = 0 V, (DG408L)$ $V_{S1b} = 1.5 V, V_{S4b} = 0 V, (DG409L)$	Room	75	-	150	-	150	
	TRANS	see figure 2	Full	-	-	175	-	175	
Break-Before-Make Time	topen	$V_{S(all)} = V_{DA} = 1.5 \text{ V},$	Room	32	1	-	1	-	
	OILN	see figure 4	Full	-	-	-	-	-	ns
Enable Turn-On Time	t _{ON(EN)}		Room	70	-	95	-	95	
	ONLEN	$V_{AX} = 0 V, V_{S1} = 1.5 V (DG408L)$ $V_{AX} = 0 V, V_{S1b} = 1.5 V (DG409L)$	Full	-	-	115	-	105	
Enable Turn-Off Time	t _{OFF(EN)}	see figure 3	Room	55	-	100	-	100	
	011 (211)		Full	-	-	115	-	105	
Charge Injection ^e	Q	$\begin{array}{l} C_{L} = 1 \; nF, R_{GEN} = 0 \; \Omega, \\ V_{GEN} = 1.5 \; V \end{array}$	Room	0.4	-	-	-	-	рС
Off Isolation e, h	OIRR	f = 100 kHz, R _I = 50 Ω	Room	-70	-	-	-	-	dB
Crosstalk ^e	X _{TALK}	1 = 100 km2, rij = 00 32	Room	-79	-	-	-	-	чD
Source Off Capacitance e	C _{S(off)}	f = 1 MHz, V_S = 0 V, V_{EN} = 0 V	Room	8	-	-	-	-	
Drain Off Capacitance ^e	C _{D(off)}	$f = 1 \text{ MHz}, V_D = 0 \text{ V}, V_{EN} = 0 \text{ V}$	Room	19	-	-	-	-	pF
Drain On Capacitance ^e	C _{D(on)}	$f = 1 MHz, V_D = 0 V, V_{EN} = 2 V$ (DG409L only)	Room	33	-	-	-	-	I

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test.

b. Room = 25 °C, full = as determined by the operating temperature suffix.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

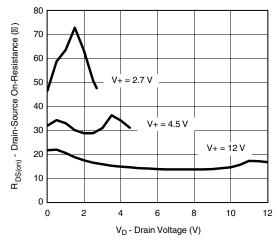
d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

e. Guaranteed by design, not subject to production test.

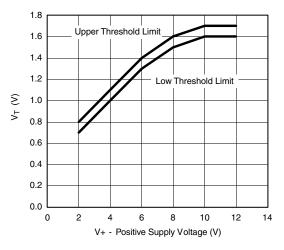
f. V_{IN} = input voltage to perform proper function.

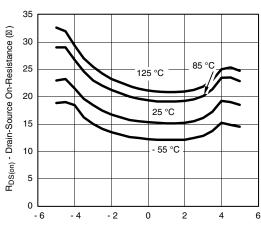
g. $\Delta R_{DS(on)} = R_{DS(on)} \max$. - $R_{DS(on)} \min$.

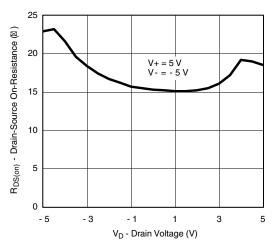
h. Worst case isolation occurs on channel 4 do to proximity to the drain pin.

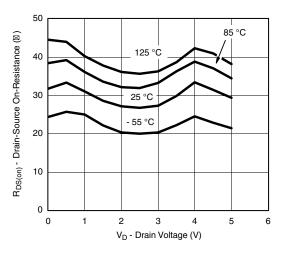

i. R_{DS(on)} flatness is measured as the difference between the minimum and maximum measured values across a defined Analog signal.

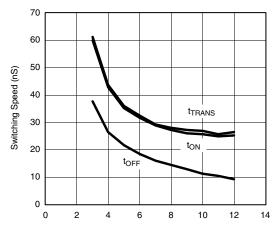
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


6


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

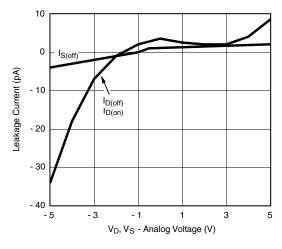

R_{DS(on)} vs. V_D and Power Supply


Input Threshold vs. V+ Supply Voltage

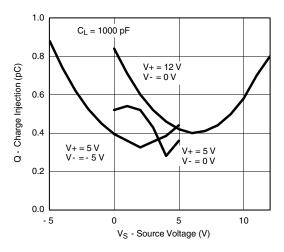

R_{DS(on)} vs. V_D and Temperature

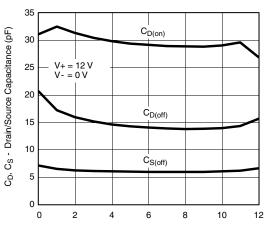
 $R_{DS(on)}$ vs. V_D and Power Supply

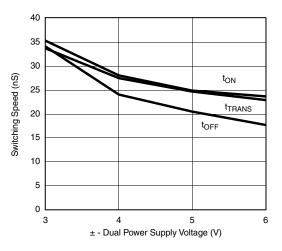
 $R_{\text{DS(on)}}$ vs. V_{D} and Temperature

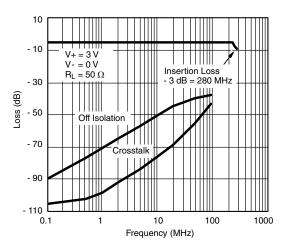

S16-0276-Rev. J, 22-Feb-16

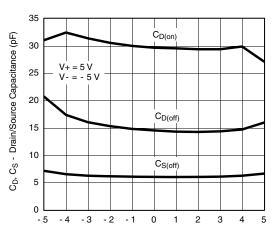
7


Document Number: 71342


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Leakage Current vs. Analog Voltage


Charge Injection vs. Analog Voltage

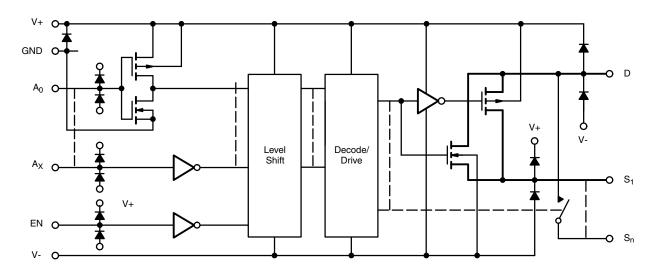

Drain/Source Capacitance vs. Analog Voltage

Switching Time vs. Dual Power Supply Voltage

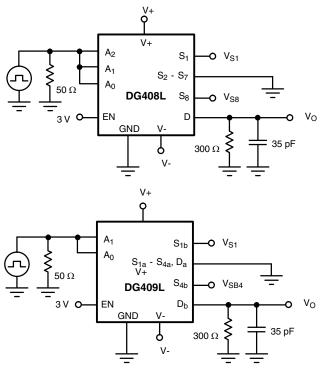
Insertion Loss, Off Isolation, and Crosstalk vs. Frequency (Single Supply)

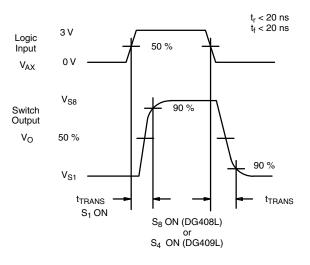
Charge Injection vs. Analog Voltage

S16-0276-Rev. J, 22-Feb-16

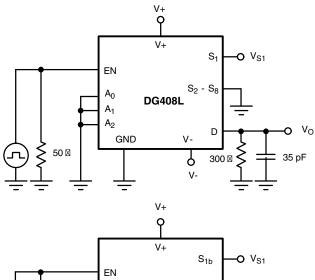

8

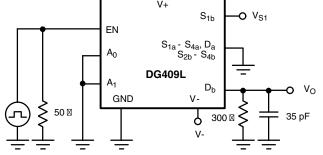
Document Number: 71342


Vishay Siliconix


SCHEMATIC DIAGRAM (Typical Channel)

TEST CIRCUITS





Vishay Siliconix

TEST CIRCUITS

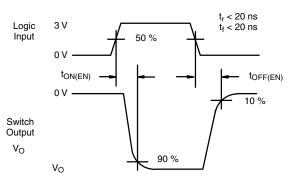


Fig. 3 - Enable Switching Time

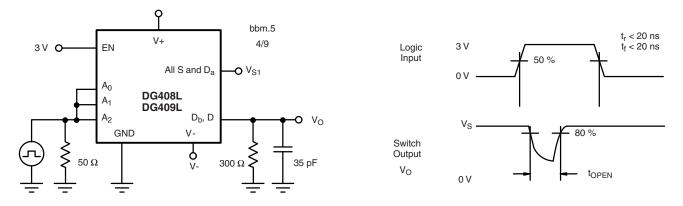
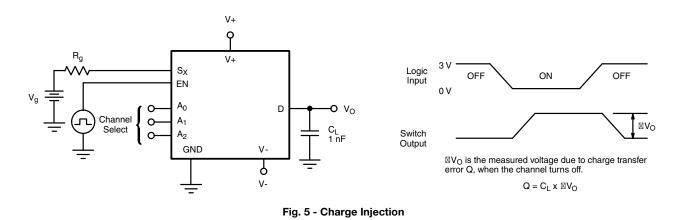



Fig. 4 - Break-Before-Make Interval

Vishay Siliconix

TEST CIRCUITS

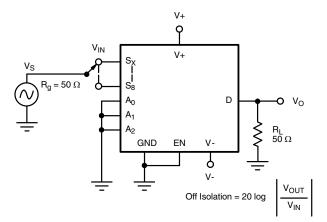


Fig. 6 - Off Isolation

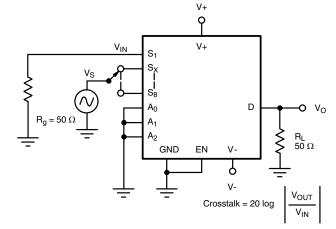


Fig. 7 - Crosstalk

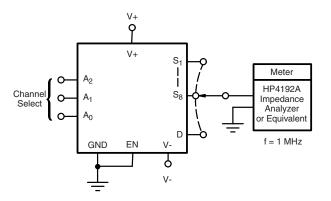
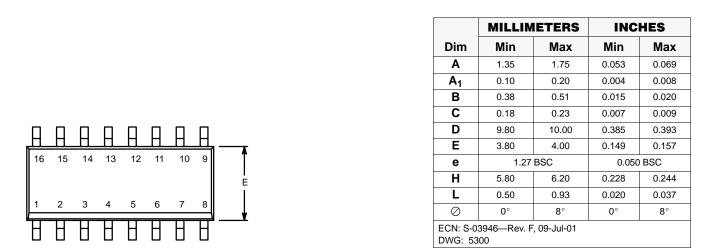
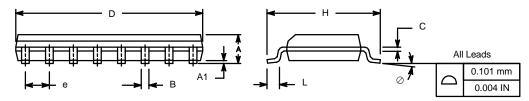



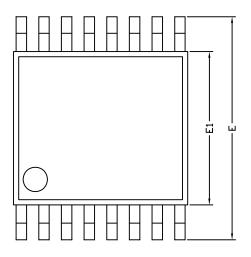
Fig. 8 - Insertion Loss

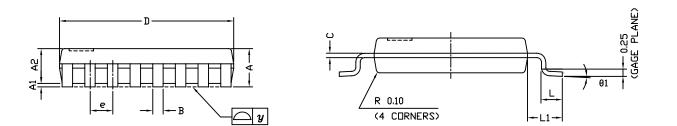



Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <u>www.vishay.com/ppg?71342</u>.

SOIC (NARROW): 16-LEAD

JEDEC Part Number: MS-012

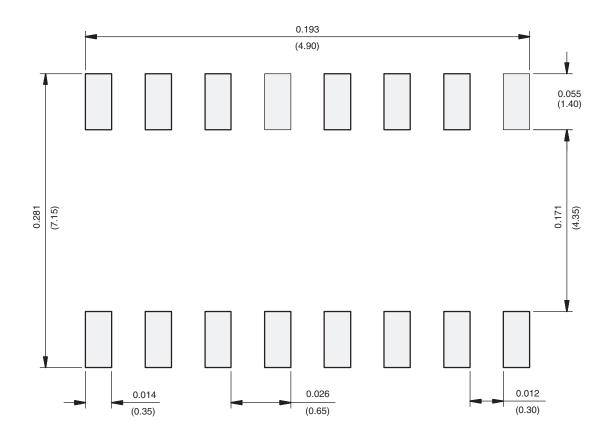




Package Information

Vishay Siliconix

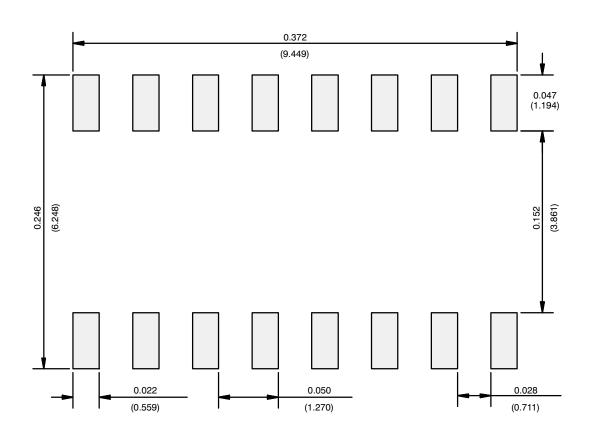
TSSOP: 16-LEAD


	C	IMENSIONS IN MILLIMETE	RS
Symbols	Min	Nom	Мах
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
В	0.22	0.28	0.38
С	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
е	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
у	-	-	0.10
θ1	0°	3°	6°
ECN: S-61920-Rev. D, 23 DWG: 5624	-Oct-06		

PAD Pattern

Vishay Siliconix

RECOMMENDED MINIMUM PAD FOR TSSOP-16


Recommended Minimum Pads Dimensions in inches (mm)

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD#PBF CD4053BPWRG4 74HC4053D.653 74HCT4052PW.118 74LVC2G53DP.125 74HC4052DB.112 74HC4052PW.112 74HC4053DB.112 74HC4067DB.112 74HC4351DB.112 74HCT4052D.112 74HCT4052DB.112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D.112 74LV4051PW.112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ