Precision CMOS Analog Switches

DESCRIPTION

The DG417, DG418, DG419 monolithic CMOS analog switches were designed to provide high performance switching of analog signals. Combining low power, low leakages, high speed, low on-resistance and small physical size, the DG417 series is ideally suited for portable and battery powered industrial and military applications requiring high performance and efficient use of board space.

To achieve high-voltage ratings and superior switching performance, the DG417 series is built on Vishay Siliconix's high voltage silicon gate (HVSG) process. Break-beforemake is guaranteed for the DG419, which is an SPDT configuration. An epitaxial layer prevents latchup.
Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG417 and DG418 respond to opposite control logic levels as shown in the Truth Table.

FEATURES

- $\pm 15 \mathrm{~V}$ analog signal range
- On-resistance - $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$: 20Ω
- Fast switching action - t_{ON} : 100 ns
- Ultra low power requirements - $\mathrm{P}_{\mathrm{D}}: 35 \mathrm{nW}$
- TTL and CMOS compatible
- MiniDIP and SOIC packaging
- 44 V supply max. rating
- 44 V supply max. rating
- Compliant to RoHS directive 2002/95/EC

BENEFITS

- Wide dynamic range
- Low signal errors and distortion
- Break-before-make switching action
- Simple interfacing
- Reduced board space
- Improved reliability

APPLICATIONS

- Precision test equipment
- Precision instrumentation
- Battery powered systems
- Sample-and-hold circuits
- Military radios
- Guidance and control systems
- Hard disk drives

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG417	DG418
0	ON	OFF
1	OFF	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

TRUTH TABLE DG419

Logic	$\mathbf{S W}_{\mathbf{1}}$	$\mathbf{S W}_{\mathbf{2}}$
0	ON	OFF
1	OFF	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

[^0]
Vishay Siliconix

ORDERING INFORMATION		
Temp. Range	Package	Part Number
DG417, DG418		
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	8-Pin Plastic MiniDIP	$\begin{gathered} \text { DG417DJ } \\ \text { DG417DJ-E3 } \end{gathered}$
		$\begin{gathered} \hline \text { DG418DJ } \\ \text { DG418DJ-E3 } \end{gathered}$
	8-Pin Narrow SOIC	DG417DY DG417DY-E3 DG417DY-T1 DG417DY-T1-E3
		DG418DY DG418DY-E3 DG418DY-T1 DG418DY-T1-E3
DG419		
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	8-Pin Plastic MiniDIP	$\begin{gathered} \text { DG419DJ } \\ \text { DG419DJ-E3 } \end{gathered}$
	8-Pin Narrow SOIC	DG419DY DG419DY-E3 DG419DY-T1 DG419DY-T1-E3

ABSOLUTE MAXIMUM RATINGS			
Parameter (Voltages referenced to V-)		Limit	Unit
V+		44	V
GND		25	
V_{L}		(GND - 0.3) to (V+) + 0.3	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Current, (Any Terminal) Continuous		30	mA
Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle)		100	
Storage Temperature	(AK Suffix)	- 65 to 150	${ }^{\circ} \mathrm{C}$
	(DJ, DY Suffix)	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	8-Pin Plastic MiniDIP ${ }^{\text {c }}$	400	mW
	8-Pin Narrow SOIC ${ }^{\text {d }}$	400	
	8-Pin CerDIP ${ }^{\text {e }}$	600	

Notes:

a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SCHEMATIC DIAGRAM Typical Channel

Figure 1.

SPECIFICATIONS ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$		Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		Unit	
				Min. ${ }^{\text {d }}$		Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$			
Analog Switch											
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full		- 15	15	- 15	15	V
Drain-Source On-Resistance	$\mathrm{R}_{\text {DS(on) }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 12 \\ & \mathrm{~V}+=13.5 \mathrm{~V}, \mathrm{~V}-=-13 . \end{aligned}$		Room Full	20		$\begin{aligned} & 35 \\ & 45 \end{aligned}$		35 45	Ω	
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=16.5, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 15.5 \mathrm{~V} \end{gathered}$		Room Full	-0.1	$\begin{gathered} -0.25 \\ -20 \end{gathered}$	$\begin{gathered} 0.25 \\ 20 \end{gathered}$	$\begin{gathered} -0.25 \\ -5 \end{gathered}$	$\begin{gathered} 0.25 \\ 5 \end{gathered}$	nA	
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		$\begin{aligned} & \text { DG417 } \\ & \text { DG418 } \end{aligned}$	Room Full	-0.1	$\begin{aligned} & -0.25 \\ & -20 \end{aligned}$	$\begin{gathered} 0.25 \\ 20 \end{gathered}$	$\begin{gathered} -0.25 \\ -5 \\ \hline \end{gathered}$	$\begin{gathered} 0.25 \\ 5 \end{gathered}$		
			DG419	Room Full	-0.1	$\begin{gathered} -0.75 \\ -60 \end{gathered}$	$\begin{gathered} 0.75 \\ 60 \end{gathered}$	$\begin{gathered} -0.75 \\ -12 \end{gathered}$	$\begin{gathered} 0.75 \\ 12 \end{gathered}$		
Channel Off Leakage Current	$I_{\text {(on) }}$	$\begin{gathered} V_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ V_{S}=V_{D}= \pm 15.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { DG417 } \\ & \text { DG418 } \end{aligned}$	Room Full	-0.4	$\begin{aligned} & -0.4 \\ & -40 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 40 \end{aligned}$	$\begin{aligned} & -0.4 \\ & -10 \end{aligned}$	$\begin{gathered} 0.4 \\ 10 \end{gathered}$		
			DG419	Room Full	-0.4	$\begin{gathered} -0.75 \\ -60 \end{gathered}$	$\begin{gathered} 0.75 \\ 60 \end{gathered}$	$\begin{gathered} -0.75 \\ -12 \end{gathered}$	$\begin{gathered} 0.75 \\ 12 \end{gathered}$		
Digital Control											
Input Current $\mathrm{V}_{\text {IN }}$ Low	1 IL			Full	0.005	-0.5	0.5	-0.5	0.5	$\mu \mathrm{A}$	
Input Current $\mathrm{V}_{\text {IN }}$ High	$\mathrm{IIH}^{\text {H }}$			Full	0.005	-0.5	0.5	-0.5	0.5		
Dynamic Characteristics											
Turn-On Time	t_{O}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \end{gathered}$ See Switching Time Test Circuit	$\begin{array}{\|l} \hline \text { DG417 } \\ \text { DG418 } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	100		$\begin{aligned} & 175 \\ & 250 \\ & \hline \end{aligned}$		$\begin{aligned} & 175 \\ & 250 \\ & \hline \end{aligned}$	ns	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		$\begin{aligned} & \text { DG417 } \\ & \text { DG418 } \end{aligned}$	Room Full	60		$\begin{aligned} & \hline 145 \\ & 210 \end{aligned}$		$\begin{aligned} & \hline 145 \\ & 210 \end{aligned}$		
Transition Time	${ }^{\text {trRANS }}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S} 1}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 2}= \pm 10 \mathrm{~V} \end{gathered}$	DG419	Room Full			$\begin{aligned} & 175 \\ & 250 \end{aligned}$		$\begin{aligned} & 175 \\ & 250 \end{aligned}$		
Break-Before-Make Time Delay (DG403)	t_{D}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}= \pm 10 \mathrm{~V} \end{gathered}$	DG419	Room	13	5		5			
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}$	= 0Ω	Room	60					pC	

DG417, DG418, DG419

Vishay Siliconix

Parameter		Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{f} \end{gathered}$									
	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$		Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit	
				Min. ${ }^{\text {d }}$		Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$			
Dynamic Characteristics											
Source Off Capacitance	$\mathrm{C}_{S_{\text {(off) }}}$	$\mathrm{f}=1 \mathrm{MHz} \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$			Room	8					
Drain Off Capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$	f= $\mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0$	$\begin{aligned} & \text { DG417 } \\ & \text { DG418 } \end{aligned}$	Room	8					pF	
Channel On	$C_{\text {D(on) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	$\begin{aligned} & \text { DG417 } \\ & \text { DG418 } \end{aligned}$	Room	30						
Capacitance			DG419	Room	35						
Power Supplies											
Positive Supply Current	$1+$	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$		Room Full	0.001		$\begin{aligned} & 1 \\ & 5 \end{aligned}$		$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$	
Negative Supply Current	I-			$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	-0.001	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$			
Logic Supply Current	IL			Room Full	0.001		$\begin{aligned} & 1 \\ & 5 \end{aligned}$		1 5		
Ground Current	$\mathrm{I}_{\text {GND }}$			Room Full	-0.0001	$\begin{aligned} & -1 \\ & -5 \end{aligned}$		$\begin{aligned} & -1 \\ & -5 \end{aligned}$			

SPECIFICATIONS ${ }^{\mathbf{a}}$ for Unipolar Supplies

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{f} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	A Suffix $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$\begin{gathered} \text { D Suffix } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	12	0	12	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=3.8 \mathrm{~V} \\ \mathrm{~V}+=10.8 \mathrm{~V} \end{gathered}$	Room	40					Ω
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$	Room	110					
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	See Switching Time Test Circuit	Room	40					ns
Break-Before-Make Time Delay	t_{D}	$\begin{gathered} \text { DG419 Only } \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	60					
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room	5					pC
Power Supplies									
Positive Supply Current	I+	$\begin{gathered} \mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	Room	0.001					
Negative Supply Current	I-		Room	-0.001					
Logic Supply Current	I		Room	0.001					$\mu \mathrm{A}$
Ground Current	$\mathrm{I}_{\text {GND }}$		Room	-0.001					

Notes:

a. Refer to Process Option Flowchart.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$R_{\mathrm{DS}(\mathrm{on})}$ vs. V_{D} and Supply Voltage

$\mathbf{R}_{\mathrm{DS}(\mathrm{on})}$ vs. Temperature

Input Switching Threshold vs. Supply Voltages

Vishay Siliconix

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Time vs. Temperature

Switching Time vs. Supply Voltages

Power Supply Currents vs. Switching Frequency

Crosstalk and Off Isolation vs. Frequency

Supply Current vs. Temperature

TEST CIRCUITS

V_{O} is the steady state output with the switch on.

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \quad \frac{R_{L}}{R_{L}+r_{\text {DS(on) }}}
$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense.

Figure 2. Switching Time (DG417, DG418)

Figure 3. Break-Before-Make (DG419)

C_{L} (includes fixture and stray capacitance)

$$
v_{O}=v_{S} \quad \frac{R_{L}}{R_{L}+r_{D S(o n)}}
$$

Figure 4. Transition Time (DG419)

TEST CIRCUITS

Figure 5. Charge Injection

$\mathrm{X}_{\text {TALK }}$ Isolation $=20 \log$	$\frac{\mathrm{~V}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{O}}}$

Figure 6. Crosstalk (DG419)

Off Isolation =20 log $\left|\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{O}}}\right|$

Figure 7. Off Isolation

Figure 8. Insertion Loss

TEST CIRCUITS

Figure 9. Source/Drain Capacitances

APPLICATIONS

Switched Signal Powers Analog Switch

The analog switch in Figure 10 derives power from its input signal, provided the input signal amplitude exceeds 4 V and its frequency exceeds 1 kHz .

This circuit is useful when signals have to be routed to either of two remote loads. Only three conductors are required: one for the signal to be switched, one for the control signal and a common return.

A positive input pulse turns on the clamping diode D_{1} and charges C_{1}. The charge stored on C_{1} is used to power the chip; operation is satisfactory because the switch requires less than $1 \mu \mathrm{~A}$ of stand-by supply current. Loading of the signal source is imperceptible. The DG419's on-resistance is a low 100Ω for a 5 V input signal.

Figure 10. Switched Signal Powers Remote SPDT Analog Switch

APPLICATIONS

Micropower UPS Transfer Switch

When V_{CC} drops to 3.3 V , the DG417 changes states, closing SW_{1} and connecting the backup cell, as shown in Figure 10. D_{1} prevents current from leaking back towards the rest of the circuit. Current consumption by the CMOS analog switch is around 100 pA ; this ensures that most of the power available is applied to the memory, where it is really needed. In the stand-by mode, hundreds of A are sufficient to retain memory data.

When the 5 V supply comes back up, the resistor divider senses the presence of at least 3.5 V , and causes a new change of state in the analog switch, restoring normal operation.

Programmable Gain Amplifier

The DG419, as shown in figure 11, allows accurate gain selection in a small package. Switching into virtual ground reduces distortion caused by $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ variation as a function of analog signal amplitude.

GaAs FET Driver

The DG419, as shown in figure 12 may be used as a GaAs FET driver. It translates a TTL control signal into - $8 \mathrm{~V}, 0 \mathrm{~V}$ level outputs to drive the gate.

Figure 11. Micropower UPS Circuit

Figure 12. Programmable Gain Amplifier

[^1]
SOIC (NARROW): 8-LEAD

JEDEC Part Number: MS-012

DIM	MILLIMETERS		INCHES					
	Min	Max	Min	Max				
A	1.35	1.75	0.053	0.069				
$\mathrm{~A}_{1}$	0.10	0.20	0.004	0.008				
B	0.35	0.51	0.014	0.020				
C	0.19	0.25	0.0075	0.010				
D	4.80	5.00	0.189	0.196				
E	3.80	4.00	0.150	0.157				
e	1.27 BSC						0.050 BSC	
H	5.80	6.20	0.228	0.244				
h	0.25	0.50	0.010	0.020				
L	0.50	0.93	0.020	0.037				
q	0°	8°	$0{ }^{\circ}$	8°				
S	0.44	0.64	0.018	0.026				
ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498								

Dim	MILLIMETERS		INCHES	
	Max	Min	Max	
$\mathbf{A}_{\mathbf{1}}$	0.81	5.08	0.150	0.200
\mathbf{B}	0.38	0.51	0.015	0.020
$\mathbf{B}_{\mathbf{1}}$	0.89	1.65	0.035	0.065
\mathbf{C}	0.20	0.30	0.008	0.012
\mathbf{D}	9.02	10.92	0.355	0.430
\mathbf{E}	7.62	8.26	0.300	0.325
$\mathbf{E}_{\mathbf{1}}$	5.59	7.11	0.220	0.280
$\mathbf{e}_{\mathbf{1}}$	2.29	2.79	0.090	0.110
$\mathbf{e}_{\mathbf{A}}$	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{Q}_{\mathbf{1}}$	1.27	2.03	0.050	0.080
\mathbf{S}	0.76	1.65	0.030	0.065
ECN: S-03946-Rev. E, 09-Jul-01				
DWG: 5478				

15°
NOTE: End leads may be half leads.

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-8

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1

TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF 74LV4066DB,118
FSA2275AUMX

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply

[^1]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70051.

