Improved Quad SPST CMOS Analog Switches

DESCRIPTION

The DG441B, DG442B are monolithic quad analog switches designed to provide high speed, low error switching of analog and audio signals. The DG441B, DG442B are upgrades to the original DG441, DG442.
Combing low on-resistance (45Ω, typ.) with high speed ($\mathrm{t}_{\mathrm{oN}} 120 \mathrm{~ns}$, typ.), the DG441B, DG442B are ideally suited for Data Acquisition, Communication Systems, Automatic Test Equipment, or Medical Instrumentation. Charge injection has been minimized on the drain for use in sample-and-hold circuits.
The DG441B, DG442B are built using Vishay Siliconix's high-voltage silicon-gate process. An epitaxial layer prevents latchup.
When on, each switch conducts equally well in both directions and blocks input voltages to the supply levels when off.

FEATURES

- Low On-Resistance: 45Ω
- Low Power Consumption: 1 mW
- Fast Switching Action - t_{ON} : 120 ns
- Low Charge Injection - Q:-1 pC

RoHS

- TTL/CMOS-Compatible Logic
- Single Supply Capability COMPLIANT halogen FREE
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Less Signal Errors and Distortion
- Reduced Power Supply Requirements
- Faster Throughput
- Reduced Pedestal Errors
- Simple Interfacing

APPLICATIONS

- Audio Switching
- Data Acquisition
- Sample-and-Hold Circuits
- Communication Systems
- Automatic Test Equipment
- Medical Instruments

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG441B	DG442B
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

ORDERING INFORMATION		
Temp Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	16-pin Plastic DIP	DG441BDJ
		DG441BDJ-E3
		DG442BDJ
		DG442BDJ-E3
	16-pin Narrow SOIC	DG441BDY-E3
		DG441BDY-T1-E3
		DG442BDY-E3
		DG442BDY-T1-E3
	16 pin QFN 4×4 mm (Variation 1)	DG441BDN-T1-E4
		DG442BDN-T1-E4

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)				
Parameter		Symbol	Limit	Unit
V+ to V-			44	V
GND to V-			25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$			(V-) - 2 to (V+) + 2 or 30 mA , whichever occurs first	
Continuous Current (Any Terminal)			30	mA
Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)			100	
Storage Temperature			- 65 to 125	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	16-pin Plastic DIP ${ }^{\text {c }}$		470	mW
	16-pin Narrow Body SOIC ${ }^{\text {d }}$		900	
	QFN-16 ${ }^{\text {d }}$		850	

Notes:

a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SPECIFICATIONS ${ }^{\text {a }}$ (for dual supplies)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{Ve} \end{gathered}$	Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {d }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-15		15	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$		45	$\begin{aligned} & 80 \\ & 95 \end{aligned}$	
On-Resistance Match Between Channels ${ }^{\text {e }}$	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$	Room Full		2	4 5	Ω
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 14 \mathrm{~V}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} \hline-0.5 \\ -5 \end{gathered}$	± 0.01	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	nA
	$I_{\text {(off) }}$		Room Full	$\begin{gathered} -0.5 \\ -5 \end{gathered}$	± 0.01	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	
Channel On Leakage Current	$I_{\text {(on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} \hline-0.5 \\ -10 \end{gathered}$	± 0.02	$\begin{gathered} 0.5 \\ 10 \end{gathered}$	
Digital Control							
Input Voltage Low	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Voltage High	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Current $\mathrm{V}_{\text {IN }}$ Low	$\mathrm{I}_{\text {INL }}$	$\begin{gathered} \mathrm{V}_{\text {IN }} \text { under test }=0.8 \mathrm{~V} \\ \text { All Other }=2.4 \mathrm{~V} \end{gathered}$	Full	- 1	-0.01	1	
Input Current $\mathrm{V}_{\text {IN }}$ High	$\mathrm{I}_{\text {INH }}$	$\begin{gathered} \mathrm{V}_{\text {IN }} \text { under test }=2.4 \mathrm{~V} \\ \text { All Other }=0.8 \mathrm{~V} \end{gathered}$	Full	-1	0.01	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {, See Figure } 2 \end{gathered}$	Room		120	220	ns
Turn-Off Time	toff		Room		65	120	
Charge Injection ${ }^{\text {e }}$	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ \mathrm{~V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega \end{gathered}$	Room		-1		pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz} \end{gathered}$	Room		-90		dB
Crosstalk (Channel-to-Channel)	$\mathrm{X}_{\text {TALK }}$		Room		-95		
SourceOff Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		4		pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room		4		
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Room		16		
Power Supplies							
Positive Supply Current	I+	$\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$			$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	I-		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{aligned} & -1 \\ & -5 \end{aligned}$			

Vishay Siliconix

SPECIFICATIONS (for single supply)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{aligned} & \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V} \end{aligned}$	Temp. ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {d }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		12	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}, 8 \mathrm{~V}$	Room Full		90	$\begin{aligned} & 160 \\ & 200 \end{aligned}$	Ω
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \\ \text { See Figure } 2 \end{gathered}$	Room		120	300	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room		60	200	
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=6 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room		4		pC
Power Supplies							
Positive Supply Current	I+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V	Room Full			1 5	$\mu \mathrm{A}$
Negative Supply Current	I-		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	-1 -5			

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM (typical channel)

Figure 1.

TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

$R_{D S(o n)}$ vs. V_{D} and Power Supply Voltages

$R_{D S(o n)}$ vs. V_{D} and Single Power Supply Voltages

Leakage Currents vs. Analog Voltage

$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ vs. V_{D} and Temperature

Input Switching Threshold vs. Supply Voltage

Leakage Currents vs. Temperature

Vishay Siliconix
TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Supply Current vs. Switching Frequency

TEST CIRCUITS

Figure 3. Charge Injection

Figure 4. Crosstalk

Off Isolation = $20 \log \left|\frac{\mathrm{~V}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{O}}}\right|$
Figure 5. Off Isolation

Figure 6. Source/Drain Capacitances

APPLICATIONS

Figure 7. Power MOSFET Driver

Figure 8. Open Loop Sample-and-Hold

Figure 9. Precision-Weighted Resistor Programmable-Gain Amplifier

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	1.35	1.75	0.053	0.069
$\mathbf{A}_{\mathbf{1}}$	0.10	0.20	0.004	0.008
\mathbf{B}	0.38	0.51	0.015	0.020
C	0.18	0.23	0.007	0.009
\mathbf{D}	9.80	10.00	0.385	0.393
E	3.80	4.00	0.149	0.157
\mathbf{e}	1.27 BSC	0.050 BSC		
\mathbf{H}	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
\varnothing	0°	8°	0°	8°
ECN: S-03946-Rev. F, 09-Jul-01 DWG: 5300				

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	3.81	5.08	0.150	0.200
$\mathbf{A}_{\mathbf{1}}$	0.38	1.27	0.015	0.050
\mathbf{B}	0.38	0.51	0.015	0.020
$\mathbf{B}_{\mathbf{1}}$	0.89	1.65	0.035	0.065
\mathbf{C}	0.20	0.30	0.008	0.012
\mathbf{D}	18.93	21.33	0.745	0.840
\mathbf{E}	7.62	8.26	0.300	0.325
$\mathbf{E}_{\mathbf{1}}$	5.59	7.11	0.220	0.280
$\mathbf{e}_{\mathbf{1}}$	2.29	2.79	0.090	0.110
$\mathbf{e}_{\mathbf{A}}$	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{\mathbf { Q } _ { \mathbf { 1 } }}$	1.27	2.03	0.050	0.080
\mathbf{S}	0.38	1.52	.015	0.060
ECN: S-03946-Rev. D, 09-Jul-01				
DWG: 5482				

QFN 4x4-16L Case Outline

TIP VIEW

BDTTOM VIEW

SIDE VIEW

DIM	VARIATION 1						VARIATION 2					
	MILLIMETERS ${ }^{(1)}$			INCHES			MILLIMETERS ${ }^{(1)}$			INCHES		
	MIN.	NOM.	MAX.									
A	0.75	0.85	0.95	0.029	0.033	0.037	0.75	0.85	0.95	0.029	0.033	0.037
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002
A3	0.20 ref.			0.008 ref.			0.20 ref.			0.008 ref.		
b	0.25	0.30	0.35	0.010	0.012	0.014	0.25	0.30	0.35	0.010	0.012	0.014
D	4.00 BSC			0.157 BSC			4.00 BSC			0.157 BSC		
D2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106
e	0.65 BSC			$0.026 \text { BSC }$			0.65 BSC			0.026 BSC		
E	4.00 BSC			0.157 BSC			4.00 BSC			0.157 BSC		
E2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106
K	0.20 min .			0.008 min .			0.20 min .			0.008 min .		
L	0.5	0.6	0.7	0.020	0.024	0.028	0.3	0.4	0.5	0.012	0.016	0.020
$\mathrm{N}^{(3)}$	16			16			16			16		
Nd(3)	4			4			4			4		
$\mathrm{Ne}^{(3)}$	4			4			4			4		

Notes

(1) Use millimeters as the primary measurement.
(2) Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
${ }^{(3)} \mathrm{N}$ is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
(5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
(6) Package warpage max. 0.05 mm .

```
ECN: S13-0893-Rev. B, 22-Apr-13
DWG: }589
```

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

