

HALOGEN

FREE

Quad SPST CMOS Analog Switches

DESCRIPTION

The DG441, DG442 monolithic quad analog switches are designed to provide high speed, low error switching of analog and audio signals. The DG441 has a normally closed function. The DG442 has a normally open function. Combining low on-resistance (50 Ω , typ.) with high speed (t_{ON} 150 ns, typ.), the DG441, DG442 are ideally suited for upgrading DG201A/202 sockets. Charge injection has been minimized on the drain for use in sample-and-hold circuits.

To achieve high voltage ratings and superior switching performance, the DG441, DG442 are built on Vishay Siliconix's high-voltage silicon-gate process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks input voltages to the supply levels when off.

FEATURES

Halogen-free according to IEC 61249-2-21 Definition

Low leakage: 80 pA

Low power consumption: 0.2 mW

Fast switching action - t_{ON}: 150 ns

Low charge injection - Q: - 1 pC

DG201A/DG202 upgrades

TTL/CMOS-compatible logic

Single supply capability

Compliant to RoHS Directive 2002/95/EC

BENEFITS

- Less signal errors and distortion
- Reduced power supply requirements
- Faster throughput
- Improved reliability
- Reduced pedestal errors
- Simplifies retrofit
- Simple interfacing

APPLICATIONS

- Audio switching
- Battery powered systems
- Data acquisition
- Hi-Rel systems
- Sample-and-hold circuits
- Communication systems
- Automatic test equipment
- Medical instruments

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE								
Logic	Logic DG441 DG442							
0	On	Off						
1	Off	On						

Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

Document Number: 70053 S11-1066-Rev. J, 30-May-11

ORDERING INFORMATION					
Temp. Range	Package	Part Number			
- 40 °C to 85 °C	16-pin plastic DIP	DG441DJ DG441DJ-E3			
	то-ріп ріазііс діг	DG442DJ DG442DJ-E3			
	16 pip payrow SOIC	DG441DY DG441DY-E3 DG441DY-T1 DG441DY-T1-E3			
	16-pin narrow SOIC	DG442DY DG442DY-E3 DG442DY-T1 DG442DY-T1-E3			

ABSOLUTE MAXIMUM RATINGS						
Parameter		Limit	Unit			
V+ to V-		44				
GND to V-		25	V			
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 30 mA, whichever occurs first	V			
Continuous Current (any terminal)		30	mA			
Current, S or D (pulsed at 1 ms, 10 % duty cycle)		100	IIIA			
Storage Tomperature	(AK suffix)	- 65 to 150	°C			
Storage Temperature	(DJ, DY suffix)	- 65 to 125				
	16-pin plastic DIP ^c	450				
Power Dissipation (Package) ^b	16-pin CerDIP ^d	900	mW			
	16-pin narrow SOIC ^d 900		IIIVV			
	LCC-20 ^d	1200				

Notes:

- a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 6 mW/°C above 75 °C.
- d. Derate 12 mW/°C above 75 °C.

SCHEMATIC DIAGRAM Typical Channel

SPECIFICATIO	NS ^a (Du	ual Supplie	es)							
	·	•	Test Conditions Unless Otherwise Specified V+ = 15 V, V- = - 15 V			_	uffix o 125 °C	_	uffix to 85 °C	
Parameter		Symbol	$V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^{f}$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch		-	<u> </u>				•			ı
Analog Signal Range ^e		V _{ANALOG}		Full		- 15	15	- 15	15	V
Drain-Source On-Resistance		R _{DS(on)}	I _S = - 10 mA, V _D = ± 8.5 V V+ = 13.5 V, V- = - 13.5 V	Room Full	50		85 100		85 100	Ω
On-Resistance Match I Channels ^e	Between	$\Delta R_{DS(on)}$	$I_S = -10 \text{ mA}, V_D = \pm 10 \text{ V}$ V+ = 15 V, V- = -15 V	Room Full			4 5		4 5	52
Switch Off Leakage Cu	ırrent	I _{S(off)}	V+ = 16.5, V- = - 16.5 V	Room Full	± 0.01	- 0.5 - 20	0.5 20	- 0.5 - 5	0.5 5	
Owner on Leakage of	mont	I _{D(off)}	$V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$	Room Full	± 0.01	- 0.5 - 20	0.5 20	- 0.5 - 5	0.5 5	nA
Channel On Leakage (Current	$I_{D(on)}$	V+ = 16.5 V, V- = -16.5 V $V_S = V_D = \pm 15.5 \text{ V}$	Room Full	± 0.08	- 0.5 - 40	0.5 40	- 0.5 - 10	0.5 10	
Digital Control										
Input Current V _{IN} Low		I _{IL}	V _{IN} under test = 0.8 V, All Other = 2.4 V	Full	- 0.01	- 500	500	- 500	500	nA
Input Current V _{IN} High		I _{IH}	V _{IN} under test = 2.4 V All Other = 0.8 V	Full	0.01	- 500	500	- 500	500	IIA
Dynamic Characteris	tics									
Turn-On Time			$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$	Room	150		250		250	ns
Turn-Off Time	DG441	t _{OFF}	$V_{S} = \pm 10 \text{ V}$	Room	90		120		120	
	DG442	011	See Figure 2	Room	110		210		210	
Charge Injection ^e		Q	$C_L = 1 \text{ nF, } V_S = 0 \text{ V}$ $V_{gen} = 0 \text{ V, } R_{gen} = 0 \Omega$	Room	- 1					рС
Off Isolation ^e		OIRR	$R_1 = 50 \Omega$, $C_1 = 5 pF$	Room	60					
Crosstalk (Channel-to- Channel)		X _{TALK}	f = 1 MHz	Room	100					dB
Source Off Capacitance ^e		C _{S(off)}	f = 1 MHz	Room	4					pF
Drain Off Capacitance ^e		C _{D(off)}	1 – 1 1011 12	Room	4					
Channel On Capacitance ^e		C _{D(on)}	V _{ANALOG} = 0 V	Room	16					
Power Supplies										
Positive Supply Curren	t	l+		Full	15		100		100	
Negative Supply Current		l-	V+ = 16.5 V, V- = - 16.5 V V _{IN} = 0 or 5 V	Room Full	- 0.0001	- 1 - 5		- 1 - 5		μΑ
Ground Current		I _{GND}		Full	- 15	- 100		- 100		

SPECIFICATIONS ^a (Single Supply)									
		Test Conditions Unless Otherwise Specified			A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C		
Parameter	Symbol	V+ = 12 V, V- = 0 V $V_{IN} = 2.4 V, 0.8 V^f$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full		0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	$I_S = -10 \text{ mA}, V_D = 3 \text{ V}, 8 \text{ V}$ V+ = 10.8 V	Room Full	100		160 200		160 200	Ω
Dynamic Characteristics			•					•	
Turn-On Time	t _{ON}	$R_L = 1 \text{ k}\Omega, C_L = 35 \text{ pF}$	Room	300		450		450	
Turn-Off Time	t _{OFF}	V _S = 8 V See Figure 2	Room	60		200		200	ns
Charge Injection	Q	$C_L = 1nF, V_{gen} = 6 V, R_{gen} = 0 \Omega$	Room	2					рС
Power Supplies								•	
Positive Supply Current	l+		Full	15		100		100	
Negative Supply Current	l-	V+ = 13.2 V, V- = 0 V V _{IN} = 0 or 5 V	Room Full	- 0.0001	- 1 - 100		- 1 - 100		μΑ
Ground Current	I _{GND}		Full	- 15	- 100		- 100		

Notes:

- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

R_{DS(on)} vs. V_D and Power Supply Voltage

R_{DS(on)} vs. V_D and Unipolar **Power Supply Voltage**

 $R_{DS(on)}$ vs. V_D and Temperature

 $R_{DS(on)}\, vs. \, V_D$ and Temperature (Single 12-V Supply)

Charge Injection vs. Source Voltage

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Switching Threshold vs. Supply Voltage

Source/Drain Leakage Currents (Single 12 V Supply)

Switching Time vs. Power Supply Voltage

Source/Drain Leakage Currents

Operating Voltage

Switching Time vs. Power Supply Voltage

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

Note: Logic input waveform is inverted for DG442.

Figure 2. Switching Time

 V_O IN_X OFF ON OFF IN_X OFF ON $Q = \Delta V_O \times C_L$ OFF OF

Figure 3. Charge Injection

Figure 5. Off Isolation

Figure 6. Source/Drain Capacitances

APPLICATIONS

Figure 7. Power MOSFET Driver

Figure 8. Open Loop Sample-and-Hold

Figure 9. Precision-Weighted Resistor Programmable-Gain Amplifier

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70053.

SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

	MILLIMETERS		INC	HES		
Dim	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.38	0.51	0.015	0.020		
С	0.18	0.23	0.007	0.009		
D	9.80	10.00	0.385	0.393		
Е	3.80	4.00	0.149	0.157		
е	1.27	BSC	0.050	BSC		
Н	5.80	6.20	0.228	0.244		
L	0.50	0.93	0.020	0.037		
0	0°	8°	0°	8°		
FCN: S-03946—Rev F 09-Jul-01						

ECN: S-03946—Rev. F, 09-Jul-01

DWG: 5300

www.vishay.com 02-Jul-01

PDIP: 16-LEAD

	MILLIN	IETERS	INC	HES		
Dim	Min	Max	Min	Max		
Α	3.81	5.08	0.150	0.200		
A ₁	0.38	1.27	0.015	0.050		
В	0.38	0.51	0.015	0.020		
B ₁	0.89	1.65	0.035	0.065		
С	0.20	0.30	0.008	0.012		
D	18.93	21.33	0.745	0.840		
E	7.62	8.26	0.300	0.325		
E ₁	5.59	7.11	0.220	0.280		
e ₁	2.29	2.79	0.090	0.110		
e _A	7.37	7.87	0.290	0.310		
L	2.79	3.81	0.110	0.150		
Q ₁	1.27	2.03	0.050	0.080		
S	0.38	1.52	.015	0.060		
ECN: S-03946—Rev. D, 09-Jul-01 DWG: 5482						

Document Number: 71261 www.vishay.com 06-Jul-01 www.vishay.com

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analog Switch ICs category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG
NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T MAX4968CEXB+
MAX4760EWX+T NLAS3799BMNR2G NLAS5123MNR2G NLAS5213AMUTAG NLAS7222AMTR2G MAX14807ECB+
MAX4968ECM+ NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX ADG613SRUZ-EP NLAS4717EPFCT1G
PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ DG4051EEN-T1-GE4 SLAS3158MNR2G PI5A3157BC6EX PI5A392AQE
MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T
PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG
HI1-5051-2