Precision Monolithic Quad SPST
 Low-Voltage CMOS Analog Switches

DESCRIPTION

The DG441L, DG442L are low voltage pin-for-pin compatible companion devices to the industry standard DG441L, DG442L with improved performance.

Using BiCMOS wafer fabrication technology allows the DG441L, DG442L to operate on single and dual supplies. Single supply voltage ranges from 3 V to 12 V while dual supply operation is recommended with $\pm 3 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$.

Combining high speed (t_{ON} : 20 ns), flat $\mathrm{R}_{\mathrm{DS}(o n)}$ over the analog signal range (5Ω), minimal insertion lose (-3 dB at 280 MHz), and excellent crosstalk and off-isolation performance (- 50 dB at 50 MHz), the DG441L, DG442L are ideally suited for audio and video signal switching.

The DG441L, DG442L responds to opposite control logic as shown in the Truth Table open and two normally closed switches.

FEATURES

- Halogen-free according to IEC 61249-2-21 Definition
- 2.7 V thru 12 V single supply or $\pm 3 \mathrm{~V}$ thru $\pm 6 \mathrm{~V}$ dual supply
- On-resistance - $\mathrm{R}_{\mathrm{DS}(o n)}: 17 \Omega$
- Fast switching - $t_{\mathrm{ON}}: 20 \mathrm{~ns}$

$$
\text { - } \mathrm{t}_{\mathrm{OFF}}: 12 \mathrm{~ns}
$$

- TTL, CMOS compatible
- Low leakage: 0.25 nA
- 2000 V ESD protection
- Compliant to RoHS Directive 2002/95/EC

BENEFITS

- Widest dynamic range
- Low signal errors and distortion
- Break-before-make switching action
- Simple interfacing

APPLICATIONS

- Precision automatic test equipment
- Precision data acquisition
- Communication systems
- Battery powered systems
- Computer peripherals
- SDSL, DSLAM
- Audio and video signal routing

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG441L	DG442L
0	On	Off
1	Off	On

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

ORDERING INFORMATION		
Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$	16-pin TSSOP	DG441LDQ-T1-E3
		DG442LDQ-T1-E3
	$\begin{aligned} & \text { 16-pin narrow } \\ & \text { SOIC } \end{aligned}$	DG441LDY-T1-E3
		DG442LDY-T1-E3
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	16-pin CerDIP	DG441LAK, DG441LAK/883
		DG442LAK, DG442LAK/883
	LCC-20	DG441LAZ/883
		DG442LAZ/883

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)				
Parameter		Symbol	Limit	Unit
V + to V -			-0.3 to 13	V
GND to V-A			7	
Digital Inputs ${ }^{\text {a }} \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$			GND - 0.3 to (V +) + 0.3 or 30 mA , whichever occurs first	
Continuous Current (any terminal)			30	mA
Current, S or D (pulsed $1 \mathrm{~ms}, 10 \%$ duty cycle)			100	
Storage Temperature	(DQ, DY suffix)		- 65 to 125	${ }^{\circ} \mathrm{C}$
	(AK suffix)		- 65 to 150	
Power Dissipation (Packages) ${ }^{\text {b }}$	16-pin TSSOP ${ }^{\text {c }}$		450	mW
	16-pin narrow Body SOIC ${ }^{\text {d }}$		650	
	16-pin CerDIP ${ }^{\text {e }}$		900	

Notes:
a. Signals on S_{X}, D_{X}, or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SPECIFICATIONS ${ }^{\text {a }}$ (Single Supply 12 V)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	A Suffix Limits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		D Suffix Limits $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	12	0	12	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{aligned} & \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=2 / 9 \mathrm{~V} \end{aligned}$	Room Full	20		$\begin{aligned} & 30 \\ & 45 \end{aligned}$		30 40	Ω
On-Resistance Match Between Channels ${ }^{\text {e }}$	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=9 \mathrm{~V}$	Room	0.1		0.5		0.5	
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{\mathrm{D}}=1 / 11 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=11 / 1 \mathrm{~V}$	Room Full		$\begin{gathered} -1 \\ -15 \end{gathered}$	$\begin{gathered} \hline 1 \\ 15 \end{gathered}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full		$\begin{gathered} -1 \\ -15 \end{gathered}$	$\begin{gathered} 1 \\ 15 \end{gathered}$	$\begin{gathered} -1 \\ -10 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=11 / 1 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		$\begin{gathered} -1 \\ -15 \end{gathered}$	$\begin{gathered} 1 \\ 15 \end{gathered}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low	1 IL	$\mathrm{V}_{\text {IN }}$ Under Test $=0.8 \mathrm{~V}$	Full	0.01	-1.5	1.5	-1	1	$\mu \mathrm{A}$
Input Current, $\mathrm{V}_{\text {IN }}$ High	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {IN }}$ Under Test $=2.4 \mathrm{~V}$	Full		-1.5	1.5	-1	1	
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\begin{gathered} R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ \mathrm{~V}_{S}=5 \mathrm{~V} \text {, see figure } 2 \end{gathered}$	Room Full	20		$\begin{aligned} & 60 \\ & 80 \end{aligned}$		$\begin{aligned} & 60 \\ & 70 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full	12		$\begin{aligned} & 35 \\ & 50 \end{aligned}$		$\begin{aligned} & 35 \\ & 45 \end{aligned}$	
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$	Room	5					pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	71					dB
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	95					
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	5					pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	6					
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	15					
Power Supplies									
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 12 V	Full	0.03		1.5		1	$\mu \mathrm{A}$
Negative Supply Current	I-		Room Full	0.002	$\begin{gathered} -1 \\ -7.5 \end{gathered}$		$\begin{array}{r} -1 \\ -5 \end{array}$		
Ground Current	$\mathrm{I}_{\mathrm{GND}}$		Full	0.002	-1.5		-1		

SPECIFICATIONS ${ }^{\text {a }}$ (Dual Supply $\pm 5 \mathrm{~V}$)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	A Suffix Limits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		D Suffix Limits $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		- 5	5	- 5	5	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 3.5 \mathrm{~V} \end{gathered}$	Room Full	20		$\begin{aligned} & 33 \\ & 45 \end{aligned}$		$\begin{aligned} & 33 \\ & 40 \end{aligned}$	O
On-Resistance Match Between Channels ${ }^{\text {e }}$	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 3.5 \mathrm{~V}$	Room	0.1		0.5		0.5	
Switch Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=5.5, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room Full		$\begin{gathered} -1 \\ -15 \end{gathered}$	$\begin{gathered} \hline 1 \\ 15 \end{gathered}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	nA
	$I_{\text {((fff) }}$		Room Full		$\begin{gathered} -1 \\ -15 \end{gathered}$	$\begin{gathered} 1 \\ 15 \end{gathered}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel On Leakage Current ${ }^{9}$	$I_{\text {(on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room Full		$\begin{gathered} -1 \\ -15 \end{gathered}$	$\begin{gathered} 1 \\ 15 \end{gathered}$	$\begin{gathered} -1 \\ -10 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low $^{\text {e }}$	$I_{\text {IL }}$	$\mathrm{V}_{\text {IN }}$ Under Test $=0.8 \mathrm{~V}$	Full	0.05	-1.5	1.5	- 1	1	
Input Current, $\mathrm{V}_{\text {IN }} \mathrm{High}^{\text {e }}$	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {IN }}$ Under Test $=2.4 \mathrm{~V}$	Full	0.05	-1.5	1.5	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics									
Turn-On Time	ton	$\begin{gathered} R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ V_{S}= \pm 3.5 \mathrm{~V} \text {, see figure } 2 \end{gathered}$	Room Full	21		$\begin{aligned} & 60 \\ & 83 \end{aligned}$		$\begin{aligned} & 60 \\ & 70 \end{aligned}$	ns
Turn-Off Time	$t_{\text {OFF }}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	16		$\begin{aligned} & 35 \\ & 55 \end{aligned}$		$\begin{aligned} & 35 \\ & 45 \end{aligned}$	
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$	Room	5					pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	68					dB
Channel-to-Channel Crosstalke	$\mathrm{X}_{\text {TALK }}$		Room	85					
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	9					pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	9					
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	20					
Power Supplies									
Positive Supply Current ${ }^{\text {e }}$	+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V	Full	0.002		1.5		1	$\mu \mathrm{A}$
Negative Supply Current ${ }^{\text {e }}$	-		Room Full	-0.002	$\begin{gathered} \hline-1 \\ -7.5 \end{gathered}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		
Ground Current ${ }^{\text {e }}$	$\mathrm{I}_{\text {GND }}$		Full	-0.002	-1.5		-1		

Vishay Siliconix

SPECIFICATIONS ${ }^{\text {a }}$ (Single Supply 5 V)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}} \end{aligned}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	A Suffix Limits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		D Suffix Limits $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full			5		5	V
Drain-Source On-Resistance ${ }^{e}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V}, 3.5 \mathrm{~V} \end{gathered}$	Room Full	35		$\begin{aligned} & 50 \\ & 88 \end{aligned}$		$\begin{aligned} & 50 \\ & 75 \end{aligned}$	
On-Resistance Match Between Channels ${ }^{\text {e }}$	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=3.5 \mathrm{~V}$	Room	0.5		1		1	Ω
Dynamic Characteristics									
Turn-On Time ${ }^{\text {e }}$	t_{ON}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \text { see figure } 2 \end{aligned}$	Room Hot	27		$\begin{aligned} & 50 \\ & 90 \end{aligned}$		$\begin{aligned} & 50 \\ & 60 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {OFF }}$		Room Hot	15		$\begin{aligned} & 30 \\ & 55 \end{aligned}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$	
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$	Room	0.5					pC
Power Supplies									
Positive Supply Current ${ }^{\text {e }}$	$1+$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V	Full	10		200		100	$\mu \mathrm{A}$
Negative Supply Current ${ }^{\text {e }}$	1 -		Room Full	-0.002	$\begin{gathered} \hline-1 \\ -7.5 \end{gathered}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		
Ground Current ${ }^{\text {e }}$	$\mathrm{I}_{\mathrm{GND}}$		Full	-10	-200		-100		

SPECIFICATIONS ${ }^{\text {a }}$ (Single Supply 3 V)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	A Suffix Limits $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		D Suffix Limits $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	V ANALOG		Full		0	3	0	3	V
Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0.5,2.2 \mathrm{~V} \end{gathered}$	Room Full	65		$\begin{gathered} 80 \\ 115 \end{gathered}$		$\begin{gathered} 80 \\ 100 \end{gathered}$	O
On-Resistance Match Between Channels ${ }^{\text {e }}$	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=2.2 \mathrm{~V}$	Room	1		3		3	
Switch Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} V+=3.3, V-=0 V \\ V_{D}=1,2 \mathrm{~V}, V_{S}=2,1 \mathrm{~V} \end{gathered}$	Room Full		$\begin{gathered} -1 \\ -15 \end{gathered}$	$\begin{gathered} \hline 1 \\ 15 \end{gathered}$	$\begin{gathered} -1 \\ -10 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	$n A$
	$I_{\text {(off) }}$		Room Full		$\begin{gathered} -1 \\ -15 \end{gathered}$	$\begin{gathered} \hline 1 \\ 15 \end{gathered}$	$\begin{gathered} -1 \\ -10 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel On Leakage Current ${ }^{9}$	$I_{\text {don }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1,2 \mathrm{~V} \end{gathered}$	Room Full		$\begin{array}{r} -1 \\ -15 \end{array}$	$\begin{gathered} 1 \\ 15 \end{gathered}$	$\begin{gathered} -1 \\ -10 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low $^{\text {e }}$	$1 / 1$	$\mathrm{V}_{\text {IN }}$ under test $=0.4 \mathrm{~V}$	Full	0.005	-1.5	1.5	-1	1	$\mu \mathrm{A}$
Input Current, $\mathrm{V}_{\text {IN }}$ High $^{\text {e }}$	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\text {IN }}$ under test $=2.4 \mathrm{~V}$	Full	0.005	-1.5	1.5	-1	1	
Dynamic Characteristics									
Turn-On Time	ton	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & V_{S}=1.5 \mathrm{~V} \text {, see figure } 2 \end{aligned}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	50		$\begin{aligned} & \hline 136 \\ & 175 \\ & \hline \end{aligned}$		$\begin{aligned} & 136 \\ & 151 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full	30		$\begin{aligned} & 100 \\ & 140 \end{aligned}$		$\begin{aligned} & 100 \\ & 125 \end{aligned}$	
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$	Room	1					pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	68					dB
Channel-to-Channel Crosstalke	$\mathrm{X}_{\text {TALK }}$		Room	85					
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{S}_{\text {(off) }}}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	6					pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	6					
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	20					

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
g. Leakage parameters are guaranteed by worst case test conditions and not subject to test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

Charge Injection vs. Drain Voltage

Input Threshold vs. Single Supply Voltage

Capacitance vs. Analog Signal
(Dual Supply)

Drain Capacitance vs. Drain Voltage
(Single Supply)

Insertion Loss, Off Isolation and Crosstalk vs. Frequency (Single Supply)

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

Figure 1.

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

Note: Logic input waveform is inverted for DG442.

Figure 2. Switching Time

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Crosstalk

Figure 5. Off Isolation

Figure 6. Source/Drain Capacitances

APPLICATIONS

Figure 7. Power MOSFET Driver

Figure 8. Open Loop Sample-and-Hold

Figure 9. Precision-Weighted Resistor Programmable-Gain Amplifier

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71399.

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	1.35	1.75	0.053	0.069
$\mathbf{A}_{\mathbf{1}}$	0.10	0.20	0.004	0.008
\mathbf{B}	0.38	0.51	0.015	0.020
C	0.18	0.23	0.007	0.009
\mathbf{D}	9.80	10.00	0.385	0.393
E	3.80	4.00	0.149	0.157
\mathbf{e}	1.27 BSC	0.050 BSC		
\mathbf{H}	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
\varnothing	0°	8°	0°	8°
ECN: S-03946-Rev. F, 09-Jul-01 DWG: 5300				

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads
Dimensions in inches (mm)

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

