Low-Voltage Single-Supply, SPDT Analog Switch in SC-70

DESCRIPTION

The DG4599 is a cost effective upgrade to other types of 4599 low-voltage, single-pole/double-throw analog switches available in the industry today.

Combining low power, high speed, low on-resistant and small physical size, the DG4599 is ideal for portable and battery powered applications.

The DG4599 is built on Vishay Siliconix's low voltage CMOS process. An epitaxial layer prevents latchup. Break-before make is guaranteed for DG4599.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FEATURES

- 6-Pin SC-70 Package
- 60Ω Max. (26 Typ.) On-Resistance
- 2Ω Typ. RoN Flatness
- Fast Switching: $t_{\mathrm{ON}}=30 \mathrm{~ns}$ (Max.)

$$
\mathrm{t}_{\mathrm{OFF}}=25 \mathrm{~ns} \text { (Max.) }
$$

- 2.25 V to 5.5 V Single Supply Operation
- Break-Before-Make Switching
- TTL/CMOS-Logic Compatible

BENEFITS

- Reduced Power Consumption
- Simple Logic Interface
- High Accuracy
- Reduce Board Space

APPLICATIONS

- Battery-Operated Equipment
- Audio and Video Signal Routing
- Cellular Phones
- Low-Voltage Data-Acquistion Systems
- Sample-and-Hold Circuits
- Communications Systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC	NO
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

ORDERING INFORMATION		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	SC70-6	DG4599DL-T1 DG4599DL-T1-E3

[^0]
Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS	Limit	Unit	
Parameter	-0.3 to +6		
Referenced V+ to GND	-0.3 to $(\mathrm{V}++0.3)$		
$\mathrm{IN}, \mathrm{COM}, \mathrm{NC}$, NO $^{\mathrm{a}}$	± 50	mA	
Continuous Current (Any Terminal)	± 200		
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	-65 to 125	${ }^{\circ} \mathrm{C}$	
Storage Temperature (D Suffix)	250	mW	
Power Dissipation (Packages) ${ }^{\mathrm{b}}$	6 -Pin SO70 ${ }^{\mathrm{C}}$		

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

SPECIFICATIONS (V+ = 5 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.8 \text { or } 2.4 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance	$r_{\text {DS(on) }}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \\ \hline \end{gathered}$		$\begin{gathered} \hline 7 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 60 \\ & 65 \\ & \hline \end{aligned}$	Ω
$\mathrm{r}_{\text {DS(on) }}$ Flatness $^{\text {d }}$	$r^{\text {DS(on) }}$ Flatness	$\mathrm{V}+=2.5 \mathrm{~V}$	Room		2		
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{array}{r} \hline-1.0 \\ -4.0 \end{array}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	$\begin{aligned} & \hline-1.0 \\ & -4.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	
Channel-On Leakage Current	${ }^{\text {D (on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$	Room Full	$\begin{aligned} & -1.0 \\ & -3.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 4.5 \\ & \hline \end{aligned}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		3		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	${ }^{\text {ton }}$	$\mathrm{V}_{\mathrm{D}} \text { or } \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figures 1 and 2	Room Full		9	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	$\mathrm{t}_{\text {OFF }}$		Room Full		5	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	
Break-Before-Make Time ${ }^{\text {d }}$	t_{d}		Room	1	4		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega \text {, Figure 3 } \end{gathered}$	Room		5	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-73		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-70		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$, $\mathrm{f}=1 \mathrm{MHz}$	Room		7		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room		20		
Drain-to-Source Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{DS} \text { (off) }}$		Room		20		
Power Supply							
Power Supply Range	V+			4.5		5.5	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					5.5	$\mu \mathrm{W}$

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 2.0 \mathrm{~V}^{\mathrm{e}}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance ${ }^{\text {d }}$	${ }^{\text {r DS }}$ (on)	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Room Full		$\begin{aligned} & 15 \\ & 19 \\ & \hline \end{aligned}$	$\begin{gathered} 95 \\ 105 \\ \hline \end{gathered}$	Ω
$\mathrm{r}_{\text {DS(on) }}$ Flatness $^{\text {d }}$	$r_{\text {DS(on) }}$ Flatness	$V_{S}=0$ to $\mathrm{V}+\mathrm{I}_{\text {S }}=10 \mathrm{~mA}$	Room		7.5		
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	V
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	${ }^{\text {ton }}$	$V_{D} \text { or } V_{S}=2.0 \mathrm{~V}, R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ Figures 1 and 2	Room Full		12	45 55	
Turn-Off Time ${ }^{\text {d }}$	$t_{\text {OFF }}$		Room Full		6	35 40	ns
Break-Before-Make Time ${ }^{\text {d }}$	t_{d}		Room	1	7		
Charge Injection ${ }^{\text {d }}$	$Q_{\text {INJ }}$	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \text {, Figure } 3 \end{gathered}$	Room		5	10	pC
Power Supply							
Power Supply Range	V+			2.7		3.3	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					3.3	$\mu \mathrm{W}$

Vishay Siliconix

SPECIFICATIONS (V+ = 2.5 V)							
Parameter	Symbol	$\begin{gathered} \text { Test Conditions } \\ \text { Otherwise Unless Specified } \\ \mathrm{V}+=2.5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 2.0 \mathrm{Ve} \end{gathered}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance	${ }^{\text {dSS(on) }}$	$\mathrm{V}+=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$		$\begin{aligned} & 26 \\ & 29 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 120 \end{aligned}$	O
$\mathrm{r}_{\text {DS(on) }}$ Flatness $^{\text {d }}$	$r_{\text {DS(on) }}$ Flatness	$\mathrm{V}+=2.5 \mathrm{~V}$	Room		10		
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	- 1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}		$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \\ & \hline \end{aligned}$		16	50 60	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	$\mathrm{V}_{\mathrm{D}} \text { or } \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figures 1 and 2	$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$		7	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	ns
Break-Before-Make Time	t_{d}		Room	1	12		
Power Supply							
Power Supply Range	V+			2.25		2.75	V
Power Supply Current ${ }^{\text {d }}$	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					2.75	$\mu \mathrm{W}$

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Charge Injection vs. Analog Voltage

DG4599
Vishay Siliconix

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

[^1]
Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL

LTC201ACN\#PBF 74LV4066DB,118 FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7 DIO1269LP10 DG307BDJ-E3

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply

[^1]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www. vishay.com/ppg?72218

