1.0 pC Charge Injection, 100 pA Leakage, 4-Channel Multiplexer

DESCRIPTION

The DG604 is an analog 4-channel CMOS, multiplexer, designed to operate from $\mathrm{a}+2.7 \mathrm{~V}$ to +12 V single supply or from $\pm 2.7 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$, dual supplies. The DG604 is fully specified at $+3 \mathrm{~V},+5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$. All control logic inputs have guaranteed 2 V logic high limits when operating from +5 V or $\pm 5 \mathrm{~V}$ supplies and 1.4 V when operating from a 3 V supply. The DG604 switches conduct equally well in both directions and offer rail to rail analog signal handling. $<1 \mathrm{pC}$ low charge injection, coupled with very low switch capacitance and leakage current makes this product ideal for use in precision instrumentation applications. Operating temperature range is specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The DG604 is available in 14 lead TSSOP and the space saving $1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$ miniQFN package.

FEATURES

- Halogen-free according to IEC 61249-2-21 Definition
- Ultra low charge injection ($\pm 1 \mathrm{pC}$, typ. over the full analog signal range)
- Leakage current < 0.5 nA max. at $85{ }^{\circ} \mathrm{C}$ (for DG604EQ-T1-E3)
- Low switch capacitance ($\mathrm{C}_{\text {soff }}, 3 \mathrm{pF}$ typ.)

RoHS COMPLIANT halogen FREE

- Low $\mathrm{R}_{\mathrm{DS}(o n)}-115 \Omega$ max.
- Fully specified with single supply operation at $3 \mathrm{~V}, 5 \mathrm{~V}$ and dual supplies at $\pm 5 \mathrm{~V}$
- Low voltage, 2.5 V CMOS/TTL compatible
- $400 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth
- Excellent isolation and crosstalk performance (typ. > - 60 dB at 10 MHz)
- Fully specified from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- 14 pin TSSOP and 16 pin miniQFN package ($1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$)
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- High-end data acquisition
- Medical instruments
- Precision instruments
- High speed communications applications
- Automated test equipment
- Sample and hold applications

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Vishay Siliconix

TRUTH TABLE	On Switches		
Enable Input	A1 Selected Input	A0	All Switches Open
	X	X	D to S1
L	L	L	D to S2
H	L	H	D to S3
H	H	L	D to S4
H	H	H	
H			

ORDERING INFORMATION

Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}^{\mathrm{a}}$	14 pin TSSOP	DG604EQ-T1-E3
	16 pin miniQFN	DG604EN-T1-E4

Notes:

a. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ datasheet limits apply.

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted			
Parameter		Limit	Unit
V+ to V-		14	V
GND to V-		7	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-0.3 \text { to }(\mathrm{V}+)+0.3$ or 30 mA , whichever occurs first	
Continuous Current (Any Terminal)		30	mA
Peak Current, S or D (Pulsed 1 ms, 10 \% Duty Cycle)		100	
Storage Temperature		-65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	14 pin TSSOP ${ }^{\text {c }}$	450	mW
	16 pin miniQFN ${ }^{\text {d, }}$ e	525	
Thermal Resistance (Package) ${ }^{\text {b }}$	14 pin TSSOP	178	C/W
	16 pin miniQFN	152	

Notes:
a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
e. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS FOR DUAL SUPPLIES

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$$\mathrm{V}_{\mathrm{IN} A 0, \mathrm{~A} 1 \text { and } \mathrm{ENABLE}}=2 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		- 5	5	- 5	5	V
On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-3 \mathrm{~V}, 0 \mathrm{~V},+3 \mathrm{~V}$	Room Full	70		$\begin{aligned} & \hline 115 \\ & 160 \end{aligned}$		$\begin{aligned} & \hline 115 \\ & 140 \end{aligned}$	Ω
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 3 \mathrm{~V}$	Room Full	1		$\begin{gathered} 5 \\ 6.5 \end{gathered}$		$\begin{gathered} 5 \\ 6.5 \end{gathered}$	
On-Resistance Flatness	$\mathrm{R}_{\text {FLATNES }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-3 \mathrm{~V}, 0 \mathrm{~V},+3 \mathrm{~V}$	Room Full	10		$\begin{aligned} & 20 \\ & 33 \end{aligned}$		$\begin{aligned} & 20 \\ & 22 \end{aligned}$	

SPECIFICATIONS FOR DUAL SUPPLIES

Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$$\mathrm{V}_{\mathrm{IN} \mathrm{AO}, \mathrm{~A} 1 \text { and }} \text { ENABLE }=2 \mathrm{~V}, 0.8 \mathrm{Va}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Switch Off Leakage Current (for 14 pin TSSOP)	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{aligned} & -0.1 \\ & -18 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 18 \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.5 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.5 \\ & \hline \end{aligned}$	nA
	$I_{\text {(} \text { (off) }}$		Room Full	± 0.01	$\begin{aligned} & -0.1 \\ & -18 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	
Channel On Leakage Current (for 14 pin TSSOP)	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{array}{r} -0.1 \\ -18 \end{array}$	$\begin{aligned} & 0.1 \\ & 18 \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	
Switch Off Leakage Current (for 16 pin miniQFN)	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{gathered} -1 \\ -18 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 18 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -2 \end{aligned}$	1 2	
	$I_{\text {(off }}$		Room Full	± 0.01	$\begin{gathered} -1 \\ -18 \end{gathered}$	$\begin{gathered} \hline 1 \\ 18 \end{gathered}$	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	
Channel On Leakage Current (for 16 pin miniQFN)	$I_{\text {don }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{gathered} -1 \\ -18 \end{gathered}$	$\begin{gathered} 1 \\ 18 \end{gathered}$	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low	1 IL	$\mathrm{V}_{\text {IN A0, A1 }}$ and ENABLE Under Test $=0.8 \mathrm{~V}$	Full	0.005	-0.1	0.1	-0.1	0.1	
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{H}	$\mathrm{V}_{\text {IN A0, A1 }}$ and ENABLE Under Test = 2 V	Full	0.005	-0.1	0.1	-0.1	0.1	
Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	3.4					pF
Dynamic Characteristics									
Transition Time	${ }^{\text {t }}$ TRans	$\begin{gathered} \mathrm{V}_{\mathrm{S}(\mathrm{CLOSE})}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}(\mathrm{OPEN})}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full	20		$\begin{gathered} 70 \\ 105 \end{gathered}$		$\begin{aligned} & 70 \\ & 80 \end{aligned}$	ns
Turn-On Time	t_{ON}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \end{gathered}$	Room Full	16		$\begin{aligned} & \hline 60 \\ & 90 \end{aligned}$		$\begin{aligned} & 60 \\ & 65 \end{aligned}$	
Turn-Off Time	$t_{\text {OFF }}$		Room Full	15		$\begin{aligned} & 52 \\ & 76 \end{aligned}$		$\begin{aligned} & 52 \\ & 56 \end{aligned}$	
Break-Before-Make Time Delay	t_{D}	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full	15	10		10		
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	0.7					pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$	Room	- 72					dB
Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Room	400					MHz
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$	Room	-81					dB
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	2.7					pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	7.3					
Channel On Capacitance ${ }^{e}$	$C_{\text {(on) }}$		Room	13.8					
Total Harmonic Distortion ${ }^{\text {e }}$	THD	$\begin{gathered} \text { Signal }=1 \mathrm{~V}_{\mathrm{RMS}}, 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ R_{\mathrm{L}}=600 \Omega \end{gathered}$	Room	0.01					\%
Power Supplies									
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, or V_{+}	Room Full	0.001		0.5		0.5	$\mu \mathrm{A}$
Negative Supply Current	I-		Room Full	- 0.001	$\begin{gathered} -0.5 \\ -1 \end{gathered}$		$\begin{gathered} -0.5 \\ -1 \end{gathered}$		
Ground Current	$\mathrm{I}_{\text {GND }}$		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	-0.001	$\begin{gathered} \hline-0.5 \\ -1 \end{gathered}$		$\begin{gathered} \hline-0.5 \\ -1 \end{gathered}$		

Vishay Siliconix

SPECIFICATIONS FOR SINGLE SUPPLY

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN} \mathrm{AO}, \mathrm{~A} 1} \text { and } \mathrm{ENABLE}=1.4 \mathrm{~V}, 0.6 \mathrm{~V}^{\mathrm{a}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	200	3			3	V
On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+1.5 \mathrm{~V}$	Room Full		325		245 290		Ω
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+1.5 \mathrm{~V}$	Room Full	5		$\begin{gathered} 6 \\ 13 \end{gathered}$		$\begin{gathered} 11 \\ 6 \end{gathered}$	
Switch Off Leakage Current (for 14 pin TSSOP)	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{array}{r} -0.1 \\ -18 \end{array}$	$\begin{aligned} & 0.1 \\ & 18 \end{aligned}$	$\begin{array}{r} -0.1 \\ -0.5 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	± 0.01	$\begin{array}{r} -0.1 \\ -18 \end{array}$	$\begin{aligned} & 0.1 \\ & 18 \end{aligned}$	$\begin{array}{r} -0.1 \\ -0.5 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	
Channel On Leakage Current (for 14 pin TSSOP)	$I_{\text {(}}$ (on)	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$	Room Full	± 0.01	$\begin{array}{r} -0.1 \\ -18 \end{array}$	$\begin{gathered} 0.1 \\ 18 \end{gathered}$	$\begin{array}{r} -0.1 \\ -0.5 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	
Switch Off Leakage Current (for 16 pin miniQFN)	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{gathered} -1 \\ -18 \end{gathered}$	$\begin{gathered} 1 \\ 18 \end{gathered}$	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
	$I_{\text {(}}$ (ff)		Room Full	± 0.01	$\begin{gathered} \hline-1 \\ -18 \end{gathered}$	$\begin{gathered} \hline 1 \\ 18 \end{gathered}$	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
Channel On Leakage Current (for 16 pin miniQFN)	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{gathered} -1 \\ -18 \end{gathered}$	$\begin{gathered} 1 \\ 18 \end{gathered}$	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low	I_{L}	VIN A0, A1 and ENABLE Under Test $=0.6 \mathrm{~V}$	Full	0.005	- 1	1	-1	1	$\mu \mathrm{A}$
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{H}	VIN A0, A1 and ENABLE Under Test $=1.4 \mathrm{~V}$	Full	0.005	-1	1	-1	1	
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	4.3					pF
Dynamic Characteristics									
Transition Time	${ }^{\text {TRANS }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}(\text { CLOSE })}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}(\mathrm{OPEN})}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room Full	95		$\begin{aligned} & 130 \\ & 190 \end{aligned}$		$\begin{aligned} & 130 \\ & 160 \end{aligned}$	ns
Enable Turn-On Time	${ }^{\text {ton(EN }}$)		Room Full	77		$\begin{aligned} & 108 \\ & 161 \end{aligned}$		$\begin{aligned} & 108 \\ & 131 \end{aligned}$	
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF (EN) }}$		Room Full	35		$\begin{gathered} \hline 76 \\ 112 \end{gathered}$		$\begin{aligned} & 76 \\ & 88 \end{aligned}$	
Break-Before-Make-Time	$t_{\text {BMM }}$		Room Full	45	5		5		
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$	Full	0.1					pC
Off-Isolation ${ }^{\text {e }}$	OIRR	$f=10 \mathrm{MHz}, R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}$	Room	- 58					dB
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-90					
Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Room	290					MHz
Total Harmonic Distortion	THD	$\begin{gathered} \text { Signal }=1 \mathrm{~V}_{\mathrm{RMS}} 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	Room	0.09					\%
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	3.1					pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$			11.7					
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$			16.5					
Power Supplies									
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, or V^{+}	Room Full	0.001		0.5		0.5	$\mu \mathrm{A}$
Negative Supply Current	I-		Room Full	-0.001	$\begin{gathered} -0.5 \\ -1 \end{gathered}$		$\begin{gathered} -0.5 \\ -1 \end{gathered}$		
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	-0.001	$\begin{gathered} -0.5 \\ -1 \end{gathered}$		$\begin{gathered} -0.5 \\ -1 \end{gathered}$		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

On-Resistance vs. \mathbf{V}_{D} (Single Supply Voltage)

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. V_{D} (Dual Supply Voltage)

On-Resistance vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

TEST CIRCUITS

Figure 1. Transition Time

Figure 2. Enable Switching Time

Figure 3. Break-Before-Make

TEST CIRCUITS

Figure 4. Charge Injection

Insertion Loss $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
Figure 5. Insertion Loss

Figure 7. Crosstalk

Off Isolation $=20 \log \frac{V_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$

Figure 6. Off-Isolation

Figure 8. Source/Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?69934.

Thin miniQFN16 Case Outline

Top view

Bottom view

DIMENSIONS	MILLIMETERS ${ }^{(1)}$			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.50	0.55	0.60	0.020	0.022	0.024
A1	0	-	0.05	0	-	0.002
A3	$0.15 \text { ref. }$			$0.006 \text { ref. }$		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	2.50	2.60	2.70	0.098	0.102	0.106
e	0.40 BSC			0.016 BSC		
E	1.70	1.80	1.90	0.067	0.071	0.075
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.018	0.020	0.022
$\mathrm{N}^{(3)}$	16			16		
$\mathrm{Nd}{ }^{(3)}$	4			4		
$\mathrm{Ne}{ }^{(3)}$	4			4		

Notes

${ }^{(1)}$ Use millimeters as the primary measurement.
${ }^{(2)}$ Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
${ }^{(3)} \mathrm{N}$ is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
${ }^{(5)}$ The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
${ }^{(6)}$ Package warpage max. 0.05 mm .

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

14L TSSOP

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Mounting Footprint
Dimensions in mm (inch)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D. 653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB.112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ

