1.8 V to 5.5 V, 4Ω Dual SPST Switches

DESCRIPTION

The DG721, DG722 and DG723 are precision dual SPST switches designed to operate from single 1.8 V to 5.5 V power supply with low power dissipation. The DG721, DG722 and DG723 can switch both analog and digital signals within the power supply rail, and conduct well in both directions.

Fabricated with advance submicron CMOS process, these switches provide high precision low and flat ON resistance, low leakage current, low parasitic capacitance, and low charge injection.
The DG721, DG722 and DG723 contain two independent Single Pole Single Throw (SPST) switches. Switch-1 and switch-2 are normally open for the DG721 and normally closed for the DG722. For the DG723, switch-1 is normally open and switch-2 is normally closed with a Break-BeforeMake switching timing.
The DG721, DG722 and DG723 are the ideal switches for use in low voltage instruments and healthcare devices, fitting the circuits of low voltage ADC and DAC, analog front end gain control, and signal path control.
As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device termination. The TDFN8 package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-E4" suffix to the ordering part number. The MSOP-8 package has tin device termination and is represented by "E3". Both device terminations meet all JEDEC standards for reflow and MSL rating.
As a further sign of Vishay Siliconix's commitment, the DG721, DG722 and D723 are fully RoHS compliant and Halogen-free.

FEATURES

- Halogen-free according to IEC 61249-2-21 definition
- 1.8 V to 5.5 V single power supply
- Low and flat switch on resistance, $2.5 \Omega /$ typ.
- Low leakage and parasitic capacitance

- $366 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth
- Latch-up current > 300 mA (JESD78)
- Space saving packages 2 mm x 2 mm TDFN8 MSOP8
- Over voltage tolerant TTL/CMOS compatible
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Healthcare and medical devices
- Test instruments
- Portable meters
- Data acquisitions
- Control and automation
- PDAs and modems
- Communication systems
- Audio, video systems
- Mechanical reed relay replacement

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking for MSOP-8: 721

Device Marking for MSOP-8: 722
DG723, MSOP-8

Top View

DG723, TDFN-8

Device Marking for TDFN-8: for DG723 x = Date/Lot Traceability Code

Device Marking for MSOP-8: 723

TRUTH TABLE (DG721, DG722)					
Logic	DG721	DG722	Switches		
	0	1	Off		
	1	0	On		
			TRUTH TABLE (DG723)		
Logic	Switch-1	Switch-2			
0	Off	On			

ORDERING INFORMATION		
Temperature Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MSOP-8	DG721DQ-T1-GE3
		DG722DQ-T1-GE3
	TDFN-8	DG723DQ-T1-GE3
		DG721DN-T1-GE4
		DG722DN-T1-GE4

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Referenced V+ to GND		-0.3 to 6	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		-0.3 to (V++0.3)	
Continuous Current (Any Terminal)		± 50	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)		± 200	
Storage Temperature (D Suffix)		- 65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	MSOP-8 ${ }^{\text {c }}$	320	mW
	TDFN-8 ${ }^{\text {d }}$	842	

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $10.53 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 1.5 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}$ to $\mathrm{V}+, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=-10 \mathrm{~mA}$	Room Full		6.5	10	
$\mathrm{R}_{\text {ON }}$ Flatness ${ }^{\text {d }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{ON}} \\ & \text { Flatness } \end{aligned}$	$\begin{gathered} \hline \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.1 \mathrm{~V} \text { to } 1.6 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=-10 \mathrm{~mA} \\ \hline \end{gathered}$	Room		0.4		Ω
$\mathrm{R}_{\text {ON }}$ Match ${ }^{\text {d }}$	R_{ON} Match	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.1 \mathrm{~V}$ to $1.6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-10 \mathrm{~mA}$	Room Full		0.3	0.9	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ ${ }^{\mathrm{N} C \text { (off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & -0.25 \\ & -0.35 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	nA
	${ }^{\text {com(off) }}$		Room Full	$\begin{aligned} & -0.25 \\ & -0.35 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	
Channel-On Leakage Current	${ }^{\text {COM (on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{aligned} & -0.25 \\ & -0.35 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$	$\mathrm{f}=1 \mathrm{MHz}$	Full		2.4		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	$\mathrm{t}_{\text {ON }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \text { figures } 1 \text { and } 2 \end{gathered}$	Room Full		16	55	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full		7	40	
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, figure 3	Room		1.8		pC
Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{V}+=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},-3 \mathrm{~dB}$	Room		319		MHz
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-67		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-92		
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$	Room		-47		
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-90		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NC} / \mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		8		pF
Drain-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {COM(off) }}$		Room		9		
Channel-On Capacitance ${ }^{\text {d }}$	C_{ON}		Room		22		
Power Supply							
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+, \mathrm{V}+=3.3 \mathrm{~V}$				1	$\mu \mathrm{A}$

Vishay Siliconix

SPECIFICATIONS (V+=5 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.8 \text { or } 2.4 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}$ to $\mathrm{V}+$, $\mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room Full		2.5	$\begin{gathered} 4.5 \\ 5 \end{gathered}$	
$\mathrm{R}_{\text {ON }}$ Flatness $^{\text {d }}$	$\begin{gathered} \hline \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.3 \mathrm{~V}$ to $3 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room		0.75	1.5	Ω
$\mathrm{R}_{\text {ON }}$ Match ${ }^{\text {d }}$	R_{ON} Match	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {COM }}=1.3 \mathrm{~V}$ to 3 V	Room		0.2	0.9	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $I_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & -0.25 \\ & -0.35 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	nA
	$\mathrm{I}_{\text {com(off) }}$		Room Full	$\begin{aligned} & -0.25 \\ & -0.35 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	
Channel-On Leakage Current	$\mathrm{I}_{\text {COM(on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO},} \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & -0.25 \\ & -0.35 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.35 \end{aligned}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Capacitance	$\mathrm{C}_{\text {in }}$	$\mathrm{f}=1 \mathrm{MHz}$	Full		2.2		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-0.1	0.005	0.1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ figures 1 and 2	Room Full		17	$\begin{aligned} & 30 \\ & 40 \\ & \hline \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	$t_{\text {OFF }}$		Room Full		9	35	
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, figure 3	Room		2.2		pC
Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},-3 \mathrm{~dB}$	Room		366		MHz
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-67		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-90		
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$	Room		-47		
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-90		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NC} / \mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		8		pF
Drain-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {COM(off) }}$		Room		9		
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{Con}^{\text {N }}$		Room		22		
Power Supply							
Power Supply Range	V+			1.8		5.5	V
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+, \mathrm{V}+=5.5 \mathrm{~V}$	Full			2	$\mu \mathrm{A}$

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

R_{ON} vs. V_{D} and Single Supply Voltage

$\mathrm{R}_{\text {ON }}$ vs. Analog Voltage and Temperature

Leakage Current vs. Temperature

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

Switching Threshold vs. Supply Voltage

Vishay Siliconix
TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

TEST CIRCUITS

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 2. Charge Injection

Figure 3. Off-Isolation

Figure 4. Channel Off/On Capacitance

Figure 5. Channel to Channel Crosstalk

[^0]
Case Outline for TDFN8 2×2

Bottom View

	MILLIMETERS			INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
A	0.50	0.55	0.60	0.020	0.022	0.024		
A1	0.00	-	0.05	0.000	-	0.002		
A3	0.152 REF			0.006 REF				
b	0.18	0.23	0.28	0.007	0.009	0.011		
D	1.95	2.00	2.05	0.077	0.079	0.081		
D2	0.75	0.80	0.85	0.030	0.031	0.033		
e	0.50 BSC					0.020 BSC		
E	1.95	2.00	2.05	0.077	0.079	0.081		
E2	1.40	1.45	1.50	0.055	0.057	0.059		
K	-	0.25	-	-	0.010	-		
L	0.30	0.35	0.40	0.012	0.014	0.016		
ECN: T15-0301-Rev. B, 29-Jun-15								
DWG: 5997								

Note

(1) All dimensions are in millimeters which will govern.
(2) Max. package warpage is 0.05 mm .
(3) Max. allowable burrs is 0.076 mm in all directions.
(4) Pin \#1 ID on top will be laser/ink marked.
(5) Dimension applies to meatlized terminal and is measured between 0.20 mm and 0.25 mm from terminal tip.
(6) Applied only for terminals.
(7) Applied for exposed pad and terminals.

MSOP: 8-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

NOTES:

1. Die thickness allowable is 0.203 ± 0.0127.
2. Dimensioning and tolerances per ANSI.Y14.5M-1994.
3.

Dimensions " D " and " E_{1} " do not include mold flash or protrusions, and are measured at Datum plane $-\mathrm{H}^{-}$, mold flash or protrusions shall not exceed 0.15 mm per side.

Dimension is the length of terminal for soldering to a substrate
Terminal positions are shown for reference only.
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm . See detail "B" and Section "C-C"

Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.
9. Controlling dimension: millimeters
10. This part is compliant with JEDEC registration MO-187, variation AA and BA.
11. Datums -A- and -B - to be determined Datum plane $-\mathrm{H}-$

Exposed pad area in bottom side is the same as teh leadframe pad size.

Detail "B" (Scale: 30/1) Dambar Protrusion

End View
$\mathbf{N}=\mathbf{8 L}$

Dim	MILLIMETERS			Note
	Min	Nom	Max	
A	-	-	1.10	
A_{1}	0.05	0.10	0.15	
A_{2}	0.75	0.85	0.95	
b	0.25	-	0.38	8
b_{1}	0.25	0.30	0.33	8
C	0.13	-	0.23	
C_{1}	0.13	0.15	0.18	
D		3.00 BSC		3
E		4.90 BSC		
E_{1}	2.90	3.00	3.10	3
e		0.65 BSC		
e_{1}		1.95 BSC		
L	0.40	0.55	0.70	4
N		8		5
\propto	0°	4°	6°	

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL

LTC201ACN\#PBF 74LV4066DB,118 FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7 DIO1269LP10 DG307BDJ-E3

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www. vishay.com/ppg?66586.

