Dual SPDT Analog Switch

DESCRIPTION

The DG9236 is a CMOS, dual SPDT analog switch designed to operate from $\mathrm{V}+=2.7 \mathrm{~V}$ to $\mathrm{V}+=16 \mathrm{~V}$ max. operating, single supply. All control logic inputs have a guaranteed 1.8 V logic high threshold when operation from $\mathrm{a}+16 \mathrm{~V}$ power supply. This makes the DG9236 ideally suited to interface directly with low voltage micro-processor control signals.
Processed with high density CMOS technology, the DG9236 while providing ultra low parasitic capacitance of 2 pF for $\mathrm{CS}_{(\mathrm{OFF})}$ and 8.4 pF for $\mathrm{CD}_{(\mathrm{ON})}$. Other performance features are: 3 dB bandwidth, $800 \mathrm{MHz},-70 \mathrm{~dB}$ crosstalk and 62 dB off isolation at 10 MHz frequency.
Key applications for the DG9236 are logic level translation, pulse generator, and high speed or low noise signal switching in precision instrumentations and portable device designs.
The operation temperature range is specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The DG9236 is available in space saving $1.4 \mathrm{~mm} x$ 1.8 mm miniQFN10 package.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device termination. The miniQFN-10 package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-E4" suffix to the ordering part number. The nickel-palladium-gold device terminations meet all JEDEC standards for reflow and MSL rating.

FEATURES

- Leakage current < 0.5 nA max. at $85^{\circ} \mathrm{C}$
- Low switch capacitance ($\mathrm{C}_{\text {soff }}, 2 \mathrm{pF}$ typ.)
- $R_{\text {DS(on) }} 101 \Omega$ max. 800 MHz bandwidth
- Fully specified with single supply operation at 16 V

RoHS complant

- Low voltage, 1.8 V CMOS/TTL compatible
- Excellent isolation and crosstalk performance (typ. >-60 dB at 10 MHz)
- Fully specified from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Latch-up current 300 mA per JESD78
- Lead (Pb)-free low profile miniQFN-10 (1.4 mm x 1.8 mm $x 0.55 \mathrm{~mm}$)
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- High-end data acquisition
- Medical instruments
- Precision instruments
- High speed communications applications
- Automated test equipment
- Sample and hold applications

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE

Selected Input		On Switches
A1	A0	DG9236
X	0	D1 to S1A
X	1	D1 to S1B
0	X	D2 to S2A
1	X	D2 to S2B

Vishay Siliconix

ORDERING INFORMATION		
Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	10 pin miniQFN	DG9236DN-T1-E4

Notes:

- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ datasheet limits apply.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
Parameter		Limit	Unit
V+ to GND		18	V
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}+)+0.3$ or 30 mA , whichever occurs first	
Continuous Current (Any Termin		30	mA
Peak Current, S or D (Pulsed 1 ms, 10 \% Duty Cycle)		100	
Storage Temperature		- 65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	10 pin miniQFN ${ }^{\text {c, d }}$	208	mW
Thermal Resistance (Package) ${ }^{\text {b }}$	10 pin miniQFN	357	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:
a. Signals on SX, DX, or AX exceeding V+ or GND will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $2.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Manual soldering with iron is not recommended for leadless components. The miniQFN-10 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS (for 16 V Supply)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}+=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{AO}, \mathrm{A} 1}=1.8 \mathrm{~V}, 0.5 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full			16	V
On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} I_{\mathrm{S}}=1 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{D}}=0.7 \mathrm{~V}, 2.6 \mathrm{~V}, 8 \mathrm{~V}, 11 \mathrm{~V}, 15.3 \mathrm{~V} \end{gathered}$	Room Full	101		$\begin{aligned} & 145 \\ & 160 \end{aligned}$	Ω
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{gathered} \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{D}}=0.7 \mathrm{~V}, 2.6 \mathrm{~V}, 8 \mathrm{~V}, 11 \mathrm{~V}, 15.3 \mathrm{~V} \end{gathered}$	Room Full	2		$\begin{aligned} & 14 \\ & 15 \end{aligned}$	
On-Resistance Flatness	R FLATNESS	$\begin{gathered} \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{D}}=0.7 \mathrm{~V}, 2.6 \mathrm{~V}, 8 \mathrm{~V}, 11 \mathrm{~V}, 15.3 \mathrm{~V} \end{gathered}$	Room Full	38		$\begin{aligned} & \hline 55 \\ & 60 \\ & \hline \end{aligned}$	
Switch Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}+=16 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=15 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	1 2	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	± 0.01	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	1	
Channel On Leakage Current	$I_{\text {(on) }}$	$\mathrm{V}+=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}} 1 \mathrm{~V} / 15 \mathrm{~V}$	Room Full	± 0.01	$\begin{aligned} & -1 \\ & -2 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	
Digital Control							
Input Current, $\mathrm{V}_{\text {IN }}$ Low	IIL	$\mathrm{V}_{\mathrm{AX}}=0.5 \mathrm{~V}$	Full	0.005	-0.1	0.1	$\mu \mathrm{A}$
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{H}	$\mathrm{V}_{\mathrm{AX}}=1.8 \mathrm{~V}$	Full	0.005	-0.1	0.1	
Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	3			pF
Dynamic Characteristics							
Turn-On Time	${ }_{\text {ton }}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ \text { see figure } 1,2 \end{gathered}$	Room Full	30		$\begin{aligned} & 70 \\ & 80 \end{aligned}$	ns
Turn-Off Time	$t_{\text {OFF }}$		Room Full	17		$\begin{aligned} & 55 \\ & 65 \end{aligned}$	
Break-Before-Make	$t_{\text {BBM }}$		Room Full	$\begin{aligned} & 19 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		
Charge Injection ${ }^{\text {e }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	6			pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$	Room	-62			dB
Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Room	800			MHz
Channel-to-Channel Crosstalk ${ }^{e}$	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$	Room	- 70			dB

SPECIFICATIONS (for 16 V Supply)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}+=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{A} 0, \mathrm{~A} 1}=1.8 \mathrm{~V}, 0.5 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Dynamic Characteristics							
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	2			pF
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	8.4			
Total Harmonic Distortion ${ }^{\text {e }}$	THD	$\begin{gathered} \hline \text { Signal }=1 \mathrm{~V}_{\mathrm{RMS}}, 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ R_{\mathrm{L}}=600 \Omega \end{gathered}$	Room	0.18			\%
Power Supplies							
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, or V_{+}	Room Full	$\begin{aligned} & 0.013 \\ & 0.022 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	$\begin{gathered} 0.01 \\ 0.021 \end{gathered}$	$\begin{array}{r} \hline-0.5 \\ -1.0 \end{array}$		

SPECIFICATIONS (for 5 V Supply)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A} 0, \mathrm{~A} 1}=1.4 \mathrm{~V}, 0.5 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full			5	V
On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, 3 \mathrm{~V}, 3.5 \mathrm{~V}$	Room Full	301		$\begin{aligned} & 365 \\ & 380 \end{aligned}$	
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}, 3 \mathrm{~V}, 3.5 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	3		$\begin{aligned} & 14 \\ & 15 \end{aligned}$	Ω
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	± 0.01	$\begin{gathered} \hline-1 \\ -1.2 \end{gathered}$	$\begin{gathered} \hline 1 \\ 1.2 \end{gathered}$	nA
	$I_{\text {(off) }}$		Room Full	± 0.01	$\begin{gathered} -1 \\ -1.2 \end{gathered}$	$\begin{gathered} 1 \\ 1.2 \end{gathered}$	
Channel On Leakage Current	$I_{\text {don }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$	Room Full	± 0.01	$\begin{gathered} \hline-1 \\ -1.2 \end{gathered}$	$\begin{gathered} 1 \\ 1.2 \end{gathered}$	
Digital Control							
Input Current, $\mathrm{V}_{\text {IV }}$ Low	I_{L}	$\mathrm{V}_{\mathrm{AX}}=0.5 \mathrm{~V}$	Full	0.005	-0.1	0.1	$\mu \mathrm{A}$
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{H}	$\mathrm{V}_{\mathrm{AX}}=1.4 \mathrm{~V}$	Full	0.005	-0.1	0.1	
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	3			pF
Dynamic Characteristics							
Turn-On Time	t_{ON}	$\begin{gathered} R_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ \text { see figure } 1,2 \end{gathered}$	Room Full	70		$\begin{aligned} & 100 \\ & 110 \\ & \hline \end{aligned}$	ns
Turn-Off Time	$t_{\text {OFF }}$		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	17		$\begin{aligned} & 70 \\ & 80 \end{aligned}$	
Break-Before-Make-Time	$t_{\text {BMM }}$		Room Full	42	$\begin{aligned} & 5 \\ & 1 \end{aligned}$		
Charge Injection ${ }^{\text {e }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$	Full	2			pC
Off-Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	Room	-62			dB
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	- 70			
Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Room	570			MHz
Total Harmonic Distortion ${ }^{\text {e }}$	THD	$\begin{gathered} \text { Signal = } 1 \mathrm{~V}_{\mathrm{RMS}}, 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	Room	2.4			\%
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{S}_{(\text {(ff) }}}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	2.1			pF
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$			8.1			
Power Supplies							
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, or V_{+}	Room Full	0.001		$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\mu \mathrm{A}$
Ground Current	$\mathrm{I}_{\mathrm{GND}}$		Room Full	-0.001	$\begin{gathered} \hline-0.5 \\ -1 \end{gathered}$		

Vishay Siliconix

SPECIFICATIONS (for 3 V Supply)							
Parameter	Symbol	Test ConditionsUnless Otherwise Specified$\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \mathrm{A}=1.4 \mathrm{~V}, 0.5 \mathrm{~V}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full			3	V
On-Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+1.5 \mathrm{~V}$	Room Full	732		$\begin{aligned} & 795 \\ & 810 \end{aligned}$	
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+1.5 \mathrm{~V}$	Room	5		$\begin{aligned} & 16 \\ & 17 \end{aligned}$	Ω
Switch Off Leakage Current (for 16 pin miniQFN)	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \\ & \hline \end{aligned}$	± 0.01	$\begin{gathered} \hline-1 \\ -1.2 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 1.2 \end{gathered}$	nA
	$I_{\text {(off) }}$		Room Full	± 0.01	$\begin{gathered} \hline-1 \\ -1.2 \end{gathered}$	$\begin{gathered} 1 \\ 1.2 \end{gathered}$	
Channel On Leakage Current (for 16 pin miniQFN)	$I_{\text {(on) }}$	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$	Room Full	± 0.01	$\begin{gathered} -1 \\ -1.2 \end{gathered}$	$\begin{gathered} 1 \\ 1.2 \end{gathered}$	
Digital Control							
Input Current, $\mathrm{V}_{\text {IN }}$ Low	I_{L}	$\mathrm{V}_{\mathrm{AX}}=0.5 \mathrm{~V}$	Full	0.005	-0.1	0.1	μ
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{H}	$\mathrm{V}_{\mathrm{AX}}=1.4 \mathrm{~V}$	Full	0.005	-0.1	0.1	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	3.1			pF
Dynamic Characteristics							
Enable Turn-On Time	${ }^{\text {toN }}$	$\begin{gathered} R_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ \text { see figure } 1,2 \end{gathered}$	Room Full	30		$\begin{aligned} & 150 \\ & 170 \end{aligned}$	ns
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full	20		$\begin{aligned} & 110 \\ & 120 \end{aligned}$	
Break-Before-Make-Time	$t_{\text {BMM }}$		Room Full	$\begin{aligned} & 19 \\ & 25 \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { not } \\ & \text { limit } \end{aligned}$	
Charge Injection ${ }^{\text {e }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$	Full	1			pC
Off-Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	Room	-63			dB
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-70			
Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Room	183			MHz
Total Harmonic Distortion ${ }^{\text {e }}$	THD	$\begin{gathered} \text { Signal }=1 \mathrm{~V}_{\text {RMS, }} 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	Room	5.5			\%
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{S_{\text {(ffi) }}}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	2.1			pF
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$			8.3			
Power Supplies							
Power Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, or V_{+}	Room Full	0.001		$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\mu \mathrm{A}$
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	-0.001	$\begin{gathered} -0.5 \\ -1 \end{gathered}$		

Notes:

a. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature.
c. Typical value are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
e. Guaranteed by design, not subject to production test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

$R_{O N}$ vs. V_{D} and Single Supply Voltage

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

R_{ON} vs. V_{D} and Single Supply Voltage

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Leakage Current vs. Analog Voltage

Switching Time vs. Temperature $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Switching Time vs. Temperature $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Switching Time vs. Temperature

DG9236 BCFE-C Charge Injection Measured at Drain $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

TEST CIRCUITS

Figure 1. Enable Switching Time

DG9236

TEST CIRCUITS

Figure 3. Charge Injection

Insertion Loss $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
Figure 4. Insertion Loss

Off Isolation $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
Figure 5. Off-Isolation

TEST CIRCUITS

Figure 6. Crosstalk

Figure 7. Source/Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg? 67049.

MINI QFN-10L CASE OUTLINE

DIM	MILLIMETERS			INCHES		
	MIN.	NAM.	MAX.	MIN.	NAM.	MAX.
A	0.45	0.55	0.60	0.0177	0.0217	0.0236
A1	0.00	-	0.05	0.000	-	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
c	0.150 or 0.127 REF ${ }^{(1)}$			0.006 or 0.005 REF (1)		
D	1.70	1.80	1.90	0.067	0.071	0.075
E	1.30	1.40	1.50	0.051	0.055	0.059
e	0.40 BSC			0.016 BSC		
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.0177	0.0197	0.0217

Note
${ }^{(1)}$ The dimension depends on the leadframe that assembly house used.

```
ECN T16-0163-Rev. B, 16-May-16
```

DWG: 5957

RECOMMENDED MINIMUM PADS FOR MINI QFN 10L

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G DG302BDJ-E3 ADG741BKSZ-REEL ADG742BKSZ5-REEL7 PI5A100WE

